满分5 > 初中数学试题 >

如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F...

如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=manfen5.com 满分网BC,证明:平行四边形EGFH是正方形.

manfen5.com 满分网
通过中位线定理得出GF∥EH且GF=EH,所以四边形EGFH是平行四边形;当添加了条件EF⊥BC,且EF=BC后,通过对角线相等且互相垂直平分(EF⊥GH,且EF=GH)就可证明是正方形. 证明:(1)∵G,F分别是BE,BC的中点, ∴GF∥EC且GF=EC. 又∵H是EC的中点,EH=EC, ∴GF∥EH且GF=EH. ∴四边形EGFH是平行四边形. (2)连接GH, ∵G,H分别是BE,EC的中点, ∴GH∥BC且GH=BC. 又∵EF⊥BC且EF=BC, 又∵EF⊥BC,GH是三角形EBC的中位线, ∴GH∥BC, ∴EF⊥GH, 又∵EF=GH. ∴平行四边形EGFH是正方形.
复制答案
考点分析:
相关试题推荐
(A题)某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,BC两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.
(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计并在图形中画出;
(2)求出各厂所修建的自来水管道的最低的造价各是多少元?

(B题)如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d.
(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.
(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.manfen5.com 满分网
查看答案
如图,已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H分别是AB、AP、DP、DC的中点.
(1)求证:EF+GH=5cm;
(2)求当∠APD=90°时,manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.
(1)猜想四边形EFGH的形状,直接回答,不必说明理由;
(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.
manfen5.com 满分网
查看答案
如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.

manfen5.com 满分网 查看答案
如图,在∠ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.
(1)求证:四边形BDEF是菱形;
(2)若AB=12cm,求菱形BDEF的周长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.