如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).
(1)把△ABC向左平移8格后得到△A
1B
1C
1,画出△A
1B
1C
1的图形并写出点B
1的坐标;
(2)把△ABC绕点C按顺时针方向旋转90°后得到△A
2B
2C,画出△A
2B
2C的图形并写出点B
2的坐标;
(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB
3C
3的图形.
考点分析:
相关试题推荐
如图,方格纸中有一条美丽可爱的小金鱼.
(1)在同一方格纸中,画出将小金鱼图案绕原点O旋转180°后得到的图案;
(2)在同一方格纸中,并在y轴的右侧,将原小金鱼图案以原点O为位似中心放大,使它们的位似比为1:2,画出放大后小金鱼的图案.
查看答案
如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上.
(1)以O为位似中心,将△OAB放大,使得放大后的△OA
1B
1与△OAB对应线段的比为2:1,画出△OA
1B
1.(所画△OA
1B
1与△OAB在原点两侧);
(2)求出线段A
1B
1所在直线的函数关系式.
查看答案
如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2)
(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)=3:1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.
查看答案
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:
(1)图形ABCD与图形A
1B
1C
1D
1关于直线MN成轴对称,请在图中画出对称轴并标注上相应字母M、N;
(2)以图中O点为位似中心,将图形ABCD放大,得到放大后的图形A
2B
2C
2D
2,则图形ABCD与图形A
2B
2C
2D
2的对应边的比是多少(注:只要写出对应边的比即可);
(3)求图形A
2B
2C
2D
2的面积.
查看答案
如图,在对Rt△OAB依次进行位似、轴对称和平移变换后得到△O′A′B′.
(1)在坐标纸上画出这几次变换相应的图形;
(2)设P(x,y)为△OAB边上任一点,依次写出这几次变换后点P对应点的坐标.
查看答案