满分5 > 初中数学试题 >

在△ABC中,∠ACB=90°,O为AC上的动点. (1)当OA=AC时,以O为...

在△ABC中,∠ACB=90°,O为AC上的动点.
(1)当OA=manfen5.com 满分网AC时,以O为圆心,OA的长为半径的圆与AB交于D,连接CD(如图),则图中相似的三角形有______
(2)当OA满足manfen5.com 满分网AC<OA<AC时,以O为圆心,OA的长为半径的圆交AB于D,交AC的延长线于E(如图).
①请你在图中适当添加一条辅助线,然后找出图中相似三角形(注:相似三角形只限于使用图中的六个字母),并加以证明;
②若⊙O的半径为5,AD=8,求tanB.

manfen5.com 满分网
(1)连接CD,易得OA=AC,且AC是圆的直径,根据直径所对的圆周角就得到∠CDB=90°,而∠ACB=90°,所以图中就有三对相似三角形; (2)①当OA满足AC<OA<AC时,连接DE,则△ADE∽△ACB.AE是圆的直径可以得到∠ADE=90°,再根据已知∠ACB=90°,就可以证明△ADE∽△ACB了.②首先利用勾股定理求出DE,然后利用相似三角形的对应边成比例求出tanB的值了. 【解析】 (1)△ACD∽△ABC,△ACD∽△CBD,△ABC∽△CBD.(3分) (2)①连接DE,则△ADE∽△ACB,理由如下:(5分) ∵AE是⊙O的直径, ∴∠ADE=90°.(6分) ∵∠ACB=90°, ∴∠ADE=∠ACB.(7分) ∵∠A=∠A, ∴△ADE∽△ACB.(8分) ②.(9分) 由①知△ADE∽△ACB,∴.(10分) ∴.(11分) ∴.(12分)
复制答案
考点分析:
相关试题推荐
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

manfen5.com 满分网 查看答案
如图,已知manfen5.com 满分网=manfen5.com 满分网,∠APC=60度.
(1)求证:△ABC是等边三角形;
(2)若BC=4cm,求⊙O的面积.

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.
求证:(1)△ABC是等边三角形;
(2)manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.

manfen5.com 满分网 查看答案
如图,在⊙O中,弦AB与DC相交于E,且AE=EC,求证:AD=BC.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.