满分5 > 初中数学试题 >

如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交...

如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.

小明按下面的方法作出了∠MON的平分线:
①反向延长射线OM;
②以点O为圆心,任意长为半径作圆,分别交∠MON的两边于点A、B,交射线OM的反向延长线于点C;
③连接CB;
④以O为顶点,OA为一边作∠AOP=∠OCB.
(1)根据上述作图,射线OP是∠MON的平分线吗?并说明理由.
(2)若过点A作⊙O的切线交射线OP于点F,连接AB交OP于点E,当∠MON=60°、OF=10时,求AE的长.

manfen5.com 满分网 manfen5.com 满分网
1.(1)连接AD,通过AD是BC的垂直平分线得出AB=AC. (2)由于AD⊥BC很明显∠B,∠C都是锐角,那么同理如果连接BF,那么∠BAC也应是锐角,因此三角形ABC是锐角三角形. 2.(1)OP是角平分线,根据圆周角定理可得出∠ACB是∠AOB的一半,而∠AOF=∠OCB,那么就能得出∠AOF=∠BOF,由此可得证. (2)由于三角形OAB是等边三角形,因此只要求出半径的长就求出了AB的长,也就知道了AE的值,那么在直角三角形OAF中,有OF的长,有∠AOF=30°,那么可求出OA的长,从而得到了AB,AE的长. 【解析】 (1)连接AD. ∵AB是⊙O的直径, ∴AD⊥BC, ∵BD=CD, ∴AB=AC; (2)连接AD. ∵AB是⊙O的直径, ∴∠ADB=90°. ∴∠B<∠ADB=90° ∠C<∠ADB=90° ∴∠B、∠C为锐角, ∵AC和⊙O交于点F,连接BF, ∴∠A<∠BFC=90° ∴△ABC为锐角三角形; ①∵∠AOF=∠OCB 又∵∠BOA=2∠OCB ∴∠AOF=∠BOF ∴OP为∠BOA的角平分线 ②∵∠MON=60° ∴△AOB为正三角形 ∵OP平分∠MON ∴AE=BE=AB ∵OP平分∠BOD ∴∠BOF=30° 又∵AF与⊙O相切 ∴AF⊥AO ∵AO=5 ∴AB=AO=5 ∴AE=.
复制答案
考点分析:
相关试题推荐
如图,在⊙O中,弦AB与DC相交于点E,AB=CD.
(1)求证:△AEC≌△DEB;
(2)点B与点C关于直线OE对称吗?试说明理由.

manfen5.com 满分网 查看答案
如图,AB是△ABC的外接圆⊙O的直径,D是⊙O上的一点,DE⊥AB于点E,且DE的延长线分别交AC、⊙O、BC的延长线于F、M、G.
(1)求证:AE•BE=EF•EG;
(2)连接BD,若BD⊥BC,且EF=MF=2,求AE和MG的长.

manfen5.com 满分网 查看答案
已知:如图,等边△ABC内接于⊙O,点P是劣弧manfen5.com 满分网上的一点(端点除外),延长BP至D,使BD=AP,连接CD.
(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;
(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?

manfen5.com 满分网 查看答案
如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.
(1)求证:AH•AB=AC2
(2)若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE•AF=AC2
(3)若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP•AQ=AC2是否成立.(不必证明)

manfen5.com 满分网 查看答案
如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.