满分5 > 初中数学试题 >

如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E...

如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O1交AC的延长线于点F,连接EF、DF.
(1)求证:△AEF∽△FED;
(2)若AD=6,DE=3,求EF的长;
(3)若DF∥BE,试判断△ABE的形状,并说明理由.

manfen5.com 满分网
(1)可通过证两组对应角相等来证两三角形相似. (2)根据(1)中得出的相似三角形即可得出AE,DE,EF这三条线段的比例关系,有了AD,DE的长,即可求出EF的值. (3)可通过证角的关系来得出三角形的形状. (1)证明:连接两圆的相交弦CE, 在圆O1中,∠EFD=∠DCE, 在圆O中,∠BAE=∠DCE, ∴∠EFD=∠BAE. ∵AE是∠BAC角平分线, ∴∠BAE=∠CAE. ∴∠CAE=∠EFD. ∵∠AEF=∠FED, ∴△AEF∽△FED. (2)【解析】 ∵△AEF∽△FED, ∴. ∴EF2=AE•DE=(AD+DE)•DE=(6+3)×3=27, ∴EF=3. (3)【解析】 △ABE为等腰三角形.理由如下: ∵ABCE是圆内接四边形, ∴∠FCE=∠ABE. ∵DF∥BE,∠FDE=∠AEB, 又∵∠FCE=∠EDF, ∴∠AEB=∠ABE. ∴△ABE为等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.

小明按下面的方法作出了∠MON的平分线:
①反向延长射线OM;
②以点O为圆心,任意长为半径作圆,分别交∠MON的两边于点A、B,交射线OM的反向延长线于点C;
③连接CB;
④以O为顶点,OA为一边作∠AOP=∠OCB.
(1)根据上述作图,射线OP是∠MON的平分线吗?并说明理由.
(2)若过点A作⊙O的切线交射线OP于点F,连接AB交OP于点E,当∠MON=60°、OF=10时,求AE的长.

manfen5.com 满分网 manfen5.com 满分网 查看答案
如图,在⊙O中,弦AB与DC相交于点E,AB=CD.
(1)求证:△AEC≌△DEB;
(2)点B与点C关于直线OE对称吗?试说明理由.

manfen5.com 满分网 查看答案
如图,AB是△ABC的外接圆⊙O的直径,D是⊙O上的一点,DE⊥AB于点E,且DE的延长线分别交AC、⊙O、BC的延长线于F、M、G.
(1)求证:AE•BE=EF•EG;
(2)连接BD,若BD⊥BC,且EF=MF=2,求AE和MG的长.

manfen5.com 满分网 查看答案
已知:如图,等边△ABC内接于⊙O,点P是劣弧manfen5.com 满分网上的一点(端点除外),延长BP至D,使BD=AP,连接CD.
(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;
(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?

manfen5.com 满分网 查看答案
如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H.
(1)求证:AH•AB=AC2
(2)若过A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE•AF=AC2
(3)若过A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP•AQ=AC2是否成立.(不必证明)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.