满分5 > 初中数学试题 >

如图,⊙O是△ABC的外接圆,AB为直径,AC=CF,CD⊥AB于D,且交⊙O于...

如图,⊙O是△ABC的外接圆,AB为直径,AC=CF,CD⊥AB于D,且交⊙O于G,AF交CD于E.
(1)求∠ACB的度数;
(2)求证:AE=CE;
(3)求证:AC2=AE•AF.

manfen5.com 满分网
(1)由于AB是直径,因此∠ACB应该是个直角. (2)可根据等角对等边来求证.由于BA垂直平分CG,那么弧AC=弧AG,又已知了AC=CF,即弧AC=弧CF,因此弧CF=弧AG,即∠ACG=∠FAC,也就得出了AE=CE. (3)本题实际求的是△AEC和△AFC相似,已知了一个公共角,又由(2)中得出的弧AC=弧CF=弧AG,那么∠F=∠ACE,因此两三角形就相似了.由此可得出所求的比例关系式. (1)【解析】 ∵AB为⊙O的直径, ∴∠ACB=90°. (2)证明:连接AG,∵AB为直径,且AB⊥CG, ∴AC=AG, 又∵AC=CF, ∴AG=CF, ∴∠ACG=∠CAF, ∴AE=CE. (3)证明:连接CF, 由(2)可知:AG=AC, ∴∠ACE=∠AFC 又∵∠CAE=∠FAC, ∴△AEC∽△ACF, ∴, ∴AC2=AE•AF.
复制答案
考点分析:
相关试题推荐
已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且manfen5.com 满分网=manfen5.com 满分网.点P是⊙C上一动点(P点与A、B点不重合).连接BP、AP.
(1)求∠BPA的度数;
(2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
某“研究性学习小组”遇到了以下问题,请参与:
已知,△ABC是等边三角形且内接于⊙O,取manfen5.com 满分网上异于A、B的点M.设直线CA与BM相交于点K,直线CB与AM相交于点N.
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)如图1,图2,图3,M分别为manfen5.com 满分网的中点、三分之一点、四分之一点,△ABC的边长均为2,分别测量出AK、BN的长,计算AK•BN的值(精确到0.01)并将结果填入下表中:
 △ABC的边长 AK•BN的值 
 图1 
 图2 2 
 图3 2 
(2)如图4,当M为manfen5.com 满分网上任意一点时,根据(1)的结果,猜想AK•BN与AB的数量关系式为______
(3)对(2)中提出的猜想,依图4给出证明.
查看答案
已知:如图1,在⊙O中,弦AB=2,CD=1,AD⊥BD.直线AD,BC相交于点E.
(1)求∠E的度数;
(2)如果点C,D在⊙O上运动,且保持弦CD的长度不变,那么,直线AD,BC相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).
①如图2,弦AB与弦CD交于点F;
②如图3,弦AB与弦CD不相交;
③如图4,点B与点C重合.
manfen5.com 满分网
查看答案
如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O1交AC的延长线于点F,连接EF、DF.
(1)求证:△AEF∽△FED;
(2)若AD=6,DE=3,求EF的长;
(3)若DF∥BE,试判断△ABE的形状,并说明理由.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.

小明按下面的方法作出了∠MON的平分线:
①反向延长射线OM;
②以点O为圆心,任意长为半径作圆,分别交∠MON的两边于点A、B,交射线OM的反向延长线于点C;
③连接CB;
④以O为顶点,OA为一边作∠AOP=∠OCB.
(1)根据上述作图,射线OP是∠MON的平分线吗?并说明理由.
(2)若过点A作⊙O的切线交射线OP于点F,连接AB交OP于点E,当∠MON=60°、OF=10时,求AE的长.

manfen5.com 满分网 manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.