满分5 > 初中数学试题 >

如图,△ABC中,E、F分别是AB、AC上的点. ①AD平分∠BAC,②DE⊥A...

如图,△ABC中,E、F分别是AB、AC上的点.
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.
以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①②⇒③,①③⇒②,②③⇒①.
(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题.

manfen5.com 满分网
根据已知及全等三角形的判定方法进行分析,从而得到命题的真假. 【解析】 (1)①②⇒③,正确;①③⇒②,错误,不符合三角形的判定;②③⇒①,正确. (2)先证①②⇒③.如图. ∵AD平分∠BAC,DE⊥AB,DF⊥AC,AD=AD, ∴Rt△ADE≌Rt△ADF. ∴DE=DF,∠ADE=∠ADF. 设AD与EF交于G,则△DEG≌△DFG, ∴∠DGE=∠DGF. ∴∠DGE=∠DGF=90°. ∴AD⊥EF. 再证②③⇒①.如图2, 设AD的中点为O,连接OE,OF, ∵DE⊥AB,DF⊥AC, ∴OE,OF分别是Rt△ADE,Rt△ADF斜边上的中线. ∴OE=AD,OF=AD. 即点O到A、E、D、F的距离相等. ∴四点A、E、D、F在以O为圆心,AD为半径的圆上,AD是直径. ∴EF是⊙O的弦. ∵EF⊥AD, ∴∠DAE=∠DAF. 即AD平分∠BAC.
复制答案
考点分析:
相关试题推荐
在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图1所示:
∵∠AOC是△ABO的外角
∴∠AOC=∠ABO+∠BAO
又∵OA=OB
∴∠OAB=∠OBA
∴∠AOC=2∠ABO
即∠ABC=manfen5.com 满分网∠AOC
如果∠ABC的两边都不经过圆心,如图2、3,那么结论会怎样?请你说明理由.
manfen5.com 满分网
查看答案
如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E.
(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立;
(3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围.

manfen5.com 满分网 查看答案
已知:如图,点O2是⊙O1上一点,⊙O2与⊙O1相交于A、D两点,BC⊥AD,垂足为D,分别交⊙O1、⊙O2于B、C两点,延长DO2交⊙O2于E,交BA延长线于F,BO2交AD于G,连接AD.
(1)求证:∠BGD=∠C;
(2)若∠DO2C=45°,求证:AD=AF;
(3)若BF=6CD,且线段BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根,求BD、BF的长.

manfen5.com 满分网 查看答案
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC与△PDB是否相似______(填“是”或“否”);
(2)当manfen5.com 满分网=______时,manfen5.com 满分网=4.

manfen5.com 满分网 查看答案
如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2,
(1)若△APB为直角三角形,求PB的长;
(2)若△APB为等腰三角形,求△APB的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.