满分5 > 初中数学试题 >

如图,在四边形ABCD中,AD<BC,AC与BD相交于O,现给出如下三个论断: ...

如图,在四边形ABCD中,AD<BC,AC与BD相交于O,现给出如下三个论断:
①AB=DC;②∠1=∠2;③AD∥BC.
请你选择其中两个论断为条件,另外一个论断为结论,构造一个命题.
(1)在构成的所有命题中,是真命题的概率P=______
(2)在构成的真命题中,请选择一个加以证明.

manfen5.com 满分网
根据概率的求法,找准两点:1,符合条件的情况数目;2全部情况的总数;二者的比值就是其发生的概率. 【解析】 (1)在三个论断:①AB=DC;②∠1=∠2;③AD∥BC;选择其中两个论断为条件,另外一个论断为结论;共有3种情况,而真命题有2个;即是真命题的概率P=.(2分) (2)选择真命题一:(3分) 证明:∵AD∥BC,AD<BC,AB=DC, ∴四边形ABCD为等腰梯形.(4分) ∴∠ABC=∠DCB.(5分) ∵BC=CB, ∴△ABC≌△DCB.(7分) ∴∠1=∠2.(8分) 选择真命题二:(3分) 证明:∵∠1=∠2, ∴OB=OC.(4分) ∵AD∥BC, ∴∠OAD=∠2,∠ODA=∠1.(5分) ∴∠OAD=∠ODA. ∴OD=OA.(6分) ∵∠AOB=∠DOC, ∴△AOB≌△DOC.(7分) ∴AB=CD.(8分)
复制答案
考点分析:
相关试题推荐
(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为manfen5.com 满分网?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

manfen5.com 满分网 manfen5.com 满分网 查看答案
平行四边形中,AC、BD是两条对角线,现从以下四个关系式①AB=BC,②AC=BD,③AC⊥BD,④AB⊥BC中,任取一个作为条件,即可推出平行四边形ABCD是菱形的概率为______
查看答案
在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:
①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D
小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:
(1)当抽得①和②时,用①,②作为条件能判定△BEC是等腰三角形吗?说说你的理由;
(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△BEC不能构成等腰三角形的概率.

manfen5.com 满分网 查看答案
一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m、n.若把m、n作为点A的横纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?
查看答案
将正面分别标有数字1,2,3,4,6,背面花色相同的五张卡片洗匀后,背面朝上放在桌面上,从中随机抽取两张.
(1)写出所有机会均等的结果,并求抽出的两张卡片上的数字之和为偶数的概率;
(2)记抽得的两张卡片的数字为(a,b),求点P(a,b)在直线y=x-2上的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.