满分5 > 初中数学试题 >

如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四...

如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.
(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)
(2)请你任选一组相似三角形,并给出证明.

manfen5.com 满分网
(1)采用列举法,列举出所有可能出现的情况,再找出相似三角形即可求得;①与③,②与④相似; (2)利用相似三角形的判定定理即可证得. 【解析】 (1)任选两个三角形的所有可能情况如下六种情况: ①②,①③,①④,②③,②④,③④(2分) 其中有两组(①③,②④)是相似的. ∴选取到的二个三角形是相似三角形的概率是P=(4分) 证明:(2)选择①、③证明. 在△AOB与△COD中, ∵AB∥CD, ∴∠CDB=∠DBA,∠DCA=∠CAB, ∴△AOB∽△COD(8分) 选择②、④证明. ∵四边形ABCD是等腰梯形, ∴∠DAB=∠CBA, ∴在△DAB与△CBA中有 AD=BC,∠DAB=∠CAB,AB=AB, ∴△DAB≌△CBA,(6分) ∴∠ADO=∠BCO. 又∠DOA=∠COB, ∴△DOA∽△COB(8分).
复制答案
考点分析:
相关试题推荐
如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).
(1)求点P落在正方形面上(含边界,下同)的概率;
(2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正方形面上的概率为manfen5.com 满分网?若存在,指出其中的一种平移方式;若不存在,说明理由.

manfen5.com 满分网 查看答案
在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器
(如图所示).
manfen5.com 满分网
(1)小明的这三件文具中,可以看做是轴对称图形的是______(填字母代号);
(2)请用这三个图形中的两个拼成一个轴对称图案,在答题卡的指定位置画出草图(只须画出一种);
(3)小红也有同样的一副三角尺和一个量角器.若他们分别从自己这三件文具中随机取出一件,则可以拼成一个轴对称图案的概率是多少(请画树状图或列表计算).
查看答案
汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,如图,三个汉字可以看成是轴对称图形.
manfen5.com 满分网manfen5.com 满分网
(1)请在方框中再写出2个类似轴对称图形的汉字;
(2)小敏和小慧利用“土”、“口”、“木”三个汉字设计一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”)小敏获胜,否则小慧获胜,你认为这个游戏对谁有利?请用列表或画树状图的方法进行分析,并写出构成的汉字进行说明.
查看答案
如图,在四边形ABCD中,AD<BC,AC与BD相交于O,现给出如下三个论断:
①AB=DC;②∠1=∠2;③AD∥BC.
请你选择其中两个论断为条件,另外一个论断为结论,构造一个命题.
(1)在构成的所有命题中,是真命题的概率P=______
(2)在构成的真命题中,请选择一个加以证明.

manfen5.com 满分网 查看答案
(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为manfen5.com 满分网?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

manfen5.com 满分网 manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.