如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是
上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE
(1)求证:四边形OGCH是平行四边形;
(2)当点C在
上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;
(3)求证:CD
2+3CH
2是定值.
考点分析:
相关试题推荐
(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;
(2)已知:如图2,⊙O
1与坐标轴交于A(1,0)、B(5,0)两点,点O
1的纵坐标为
.求⊙O
1的半径.
查看答案
如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.
查看答案
如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为
.
查看答案
“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为
.
查看答案
如图是一个俱乐部的徽章.徽章的图案是一个金色的圆圈,中间是一个矩形,矩形中间又有一个蓝色的菱形,徽章的直径为2cm,则徽章内的菱形的边长为
cm.
查看答案