满分5 > 初中数学试题 >

已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长...

已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2
(思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.)
(Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
(Ⅰ)考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了; (Ⅱ)还将△ACM沿直线CE对折,得△DCM,连DN,△GCM≌△ACM,然后由勾股定理即可证明. (Ⅰ)证明:∵将△ACM沿直线CE对折,得△DCM,连DN, ∴△DCM≌△ACM(1分) ∴CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A 又∵CA=CB, ∴CD=CB(2分), ∴∠DCN=∠ECF-∠DCM=45°-∠DCM ∠BCN=∠ACB-∠ECF-∠ACM =90°-45°-∠ACM=45°-∠ACM ∴∠DCN=∠BCN (3分) 又∵CN=CN, ∴△CDN≌△CBN.(4分) ∴DN=BN,∠CDN=∠B. ∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.(5分) ∴在Rt△MDN中,由勾股定理 ∴MN2=DM2+DN2,即MN2=AM2+BN2.(6分) (Ⅱ)【解析】 关系式MN2=AM2+BN2仍然成立.(7分) 证明:∵将△ACM沿直线CE对折,得△GCM,连GN, ∴△GCM≌△ACM.(8分) ∴CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM, 又∵CA=CB,得CG=CB. ∵∠GCN=∠GCM+∠ECF=∠GCM+45° ∴∠BCN=∠ACB-∠ACN=90°-(∠ECF-∠ACM)=45°+∠ACM 得∠GCN=∠BCN. (8分) 又∵CN=CN, ∴△CGN≌△CBN. ∴GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°-∠CAB=135°, ∴∠MGN=∠CGM-∠CGN=135°-45°=90°, ∴在Rt△MGN中,由勾股定理, ∴MN2=GM2+GN2,即MN2=AM2+BN2.(9分)
复制答案
考点分析:
相关试题推荐
如图,manfen5.com 满分网,D、E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?

manfen5.com 满分网 查看答案
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.
求证:CD=CE.

manfen5.com 满分网 查看答案
如图,AD是⊙O的直径.
manfen5.com 满分网
(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是______°,∠B2的度数是______°;
(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;
(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,BnCn把圆周2n等分,请你用含n的代数式表示∠Bn的度数(只需直接写出答案).
查看答案
如图,AB是⊙O的直径,C、D是⊙O上的两点,且AC=CD.
(1)求证:OC∥BD;
(2)若BC将四边形OBDC分成面积相等的两个三角形,试确定四边形OBDC的形状.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接PA、PB、PC、PD.
(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;
(2)在(1)的条件下,若cos∠PCB=manfen5.com 满分网,求PA的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.