满分5 > 初中数学试题 >

已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点...

已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.

manfen5.com 满分网
要求证:点E是过A,B,D三点的圆的圆心,只要证明AE=BE=DE即可,可以根据等角对等边可以证得. 证明:∵点D在∠BAC的平分线上, ∴∠1=∠2.(1分) 又∵DE∥AC, ∴∠2=∠3, ∴∠1=∠3.(2分) ∴AE=DE.(3分) 又∵BD⊥AD于点D, ∴∠ADB=90°.(4分) ∴∠EBD+∠1=∠EDB+∠3=90°.(5分) ∴∠EBD=∠EDB.(6分) ∴BE=DE.(7分) ∴AE=BE=DE.(8分) ∵过A,B,D三点确定一圆,又∠ADB=90°, ∴AB是A,B,D所在的圆的直径.(9分) ∴点E是A,B,D所在的圆的圆心.(10分)
复制答案
考点分析:
相关试题推荐
如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.
(1)求证:A、E、C、F四点共圆;
(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.

manfen5.com 满分网 查看答案
如图①,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD>1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N.如果定义:只有一组对角是直角的四边形叫做损矩形.
(1)试找出图1中的一个损矩形;
(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;
(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;
(4)在图②中,过点M作MG⊥y轴于点G,连接DN,若四边形DMGN为损矩形,求D点坐标.

manfen5.com 满分网 查看答案
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

manfen5.com 满分网 查看答案
已知:如图,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是菱形.

manfen5.com 满分网 查看答案
直角三角形三边长分别为6,8,10,那么这个三角形外接圆的半径等于    . 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.