满分5 > 初中数学试题 >

如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30度. ...

如图,已知在⊙O中,AB=4manfen5.com 满分网,AC是⊙O的直径,AC⊥BD于F,∠A=30度.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

manfen5.com 满分网
(1)先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为120度,在Rt△ABF中根据勾股定理可求出半径的长,利用扇形的面积公式即可求解; (2)直接根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得圆锥的底面圆的半径. 【解析】 (1)法一:过O作OE⊥AB于E,则 BF=AB=2. 在Rt△AEO中,∠BAC=30°,cos30°=. ∴OA===4. 又∵OA=OB, ∴∠ABO=30度. ∴∠BOC=60度. ∵AC⊥BD,∴. ∴∠COD=∠BOC=60度. ∴∠BOD=120度. ∴S阴影==. 法二:连接AD. ∵AC⊥BD,AC是直径, ∴AC垂直平分BD. ∴AB=AD,BF=FD,. ∴∠BAD=2∠BAC=60°, ∴∠BOD=120度. ∵BF=AB=2,sin60°=, AF=AB•sin60°=4×=6. ∴OB2=BF2+OF2.即. ∴OB=4. ∴S阴影=S圆=. 法三:连接BC. ∵AC为⊙O的直径, ∴∠ABC=90度. ∵AB=4, ∴. ∵∠A=30°,AC⊥BD, ∴∠BOC=60°,∴∠BOD=120度. ∴S阴影=π•OA2=×42•π=. 以下同法一; (2)设圆锥的底面圆的半径为r,则周长为2πr, ∴. ∴.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A、B两点,且OA=OB=manfen5.com 满分网
(1)写出A、B两点的坐标;
(2)画出线段AB绕点O旋转一周所形成的图形,并求其面积(结果保留π).

manfen5.com 满分网 查看答案
如图,已知△ABC中,AB=AC,∠A=36°.
(1)尺规作图:在AC上求作一点P,使BP+PC=AB;(保留作图痕迹,不写作法)
(2)在已作的图形中,连接PB,以点P为圆心,PB长为半径画弧交AC的延长线于点E,若BC=2cm,求扇形PBE的面积.

manfen5.com 满分网 查看答案
如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2
(1)求⊙O1的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.
(1)求证:△AOC≌△BOD;
(2)若OA=3cm,OC=1cm,求阴影部分的面积.

manfen5.com 满分网 查看答案
如图,有一直径是1cm的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB.
(1)被剪掉的阴影部分的面积是多少?
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少(结果可用根号表示).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.