如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是
上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.
考点分析:
相关试题推荐
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN
2=AM
2+BN
2;
(思路点拨:考虑MN
2=AM
2+BN
2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.)
(Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN
2=AM
2+BN
2是否仍然成立?若成立,请证明;若不成立,请说明理由.
查看答案
如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.
求证:CD=CE.
查看答案
如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.
(1)若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变?若会改变,请说明理由;若不会改变,请求出EF的长;
(2)若AP=BP,求证四边形OEPF是正方形.
查看答案
已知:如图,AB是⊙O的一条弦,点C为
的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.
(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;
(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.
查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.
查看答案