在10×10的网格纸上建立平面直角坐标系如图所示,在Rt△ABC中,∠OAB=90°,且点B的坐标为(3,4).
(1)画出△OAB向左平移3个单位后的△O
1A
1B
1,写出点B
1的坐标;
(2)画出△OAB绕点O顺时针旋转90°后的△OA
2B
2,并求点B旋转到点B
2时,点B经过的路线长(结果保留π).
考点分析:
相关试题推荐
如图1至图5,⊙O均作无滑动滚动,⊙O
1、⊙O
2、⊙O
3、⊙O
4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.
阅读理【解析】
(1)如图1,⊙O从⊙O
1的位置出发,沿AB滚动到⊙O
2的位置,当AB=c时,⊙O恰好自转1周;
(2)如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O
1的位置旋转到⊙O
2的位置,⊙O绕点B旋转的角∠O
1BO
2=n°,⊙O在点B处自转
周.
实践应用:
(1)在阅读理解的(1)中,若AB=2c,则⊙O自转______周;若AB=l,则⊙O自转______周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转______周;若∠ABC=60°,则⊙O在点B处自转______周;
(2)如图3,∠ABC=90°,AB=BC=
c.⊙O从⊙O
1的位置出发,在∠ABC外部沿A-B-C滚动到⊙O
4的位置,⊙O自转______周.
拓展联想:
(1)如图4,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由;
(2)如图5,多边形的周长为l,⊙O从与某边相切于点D的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D的位置,直接写出⊙O自转的周数.
查看答案
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π).
查看答案
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图.
(1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA
1B
1C
1,请画出菱形OA
1B
1C
1,并直接写出点B
1的坐标;
(2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA
2B
2C
2,请画出菱形OA
2B
2C
2,并求出点B旋转到B
2的路径长.
查看答案
问题探究:
(1)如图①所示是一个半径为
,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形ABB′A′,则蚂蚁爬行的最短路程即为线段AB′的长);
(2)如图②所示是一个底面半径为
,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程;
(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.
查看答案
某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m
2和1200m
2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:
| 公园A | 公园B |
路程(千米) | 运费单价(元) | 路程(千米) | 运费单价(元) |
甲地 | 30 | 0.25 | 32 | 0.25 |
乙地 | 22 | 0.3 | 30 | 0.3 |
(注:运费单价指将每平方米草皮运送1千米所需的人民币)
(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m
2)
(2)请设计出总运费最省的草皮运送方案,并说明理由.
查看答案