满分5 > 初中数学试题 >

在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2...

在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.
若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长. 【解析】 ∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根, ∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0; 解得b=2,b=-10(舍去); ①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立; ②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形; 此时△ABC的周长为:5+5+2=12; 答:△ABC的周长是12.
复制答案
考点分析:
相关试题推荐
从甲、乙两题中选做一题.如果两题都做,只以甲题计分.
题甲:若关于x一元二次方程x2-2(2-k)x+k2+12=0有实数根a,β.
(1)求实数k的取值范围;
(2)设manfen5.com 满分网,求t的最小值.
题乙:如图所示,在矩形ABCD中,P是BC边上一点,连接DP并延长,交AB的延长线于点Q.
(1)若manfen5.com 满分网=manfen5.com 满分网,求manfen5.com 满分网的值;
(2)若点P为BC边上的任意一点,求证:manfen5.com 满分网-manfen5.com 满分网=.
我选做的是______题.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2-6x-k2=0(k为常数).
(1)求证:方程有两个不相等的实数根;
(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
查看答案
关于x的一元二次方程x2-x+p-1=0有两实数根x1,x2
(1)求p的取值范围;
(2)若[2+x1(1-x1)][2+x2(1-x2)]=9,求p的值.
查看答案
已知一元二次方程x2-2x+m=0.
(1)若方程有两个实数根,求m的范围;
(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.