代数式x12+x22=x12+x22+2x1x2-2x1x2=(x1+x2)2-2x1x2,根据一元二次方程根与系数的关系可以求得两根的和与两根的积,代入即可得到关于m的方程,解方程即可求m的值.
【解析】
∵x1、x2是方程x2-(m-1)x+2m=0的两个实数根.
∴x1+x2=m-1,x1•x2=2m.
又∵x12+x22=x12+x22+2x1x2-2x1x2=(x1+x2)2-2x1x2.
将x1+x2=m-1,x1•x2=2m代入得:
x12+x22=x12+x22+2x1x2-2x1x2=(x1+x2)2-2x1x2=(m-1)2-2×2m=8.
整理得m2-6m-7=0.
解得m=7或-1.
方程的判别式△=(m-1)2-8m
当m=7时,△=36-7×8=-20<0,则m=7应舍去;
当m=-1时,△=4+8=12>0.
综上可得,m=-1.