由于两个方程都有根,可以利用它们的判别式△求出m,n的取值范围.再由根与系数的关系和已知条件得出m,n的关系式,
【解析】
∵方程mx2-14x-7=0有两个实数根,则△=196+28m≥0,
∴m≥-7,且m≠0,①
∵方程y2-2(n-1)y+n2-2n=0有两个实数根,则△=4(n-1)2-4(n2-2n)=4>0,
分解因式得,(y-n+2)(y-n)=0,
∴y1=n-2,y2=n,
∵-2≤y1<y2≤4,
∴-2≤n-2<n≤4,
解得,0≤n≤4,
∵x1+x2=,x1x2=-,
∴+2(2y1-y22)+14=0变形为
++2[2(n-2)-n2]+14=0,
化简得,m=2n2-4n-6.
由二次函数的图象知,
当0≤n≤4时,-8≤m≤10,②
由①②得:-7≤m≤10,且m≠0.