满分5 >
初中数学试题 >
如图:将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到...
如图:将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是( )
A.AD=BC′
B.∠EBD=∠EDB
C.△ABE∽△CBD
D.sin∠ABE=
考点分析:
相关试题推荐
给出下面四个命题:
(1)全等三角形是相似三角形;
(2)所有的直角三角形都相似;
(3)所有的等边三角形都相似;
(4)顶角相等的两个等腰三角形相似.
其中真命题的个数有( )
A.1个
B.2个
C.3个
D.4个
查看答案
如图,AB∥CD、AD∥CE,F、G分别是AC和FD的中点,过G的直线依次交AB、AD、CD、CE于点M、N、P、Q,
求证:MN+PQ=2PN.
查看答案
如图,矩形ABCD中,边长AB=3,
,两动点E、F分别从顶点B、C同时开始以相同速度在边BC、CD上运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,对应边EG=BC,B、E、C、G在同一直线上,DE与BF交于点O.
(1)若BE=1,求DH的长;
(2)当E点在BC边上的什么位置时,△BOE与△DOF的面积相等?
(3)延长DH交BC的延长线于M,当E点在BC边上的什么位置时,DM=DE?
查看答案
如图,在△ABC中,AB=AC,BE平分∠ABC,DE∥BC.
求证:DE=EC.
查看答案
如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=
AB,OD=2.
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比
.
①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.
查看答案