满分5 > 初中数学试题 >

AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线...

AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.
(1)求证:△AHD∽△CBD;
(2)连HO,若CD=AB=2,求HD+HO的值.

manfen5.com 满分网
(1)要证△AHD∽△CBD,只要证明这两个三角形的两组对边的比相等,就可以证出; (2)①设OD=x,则BD=1-x,AD=1+x,由Rt△AHD∽Rt△CBD可用x表示出DH的值,在Rt△HOD中利用勾股定理可用x表示出OH的值,进而可得出结论; ②当点E移动到使D与O重合的位置时,这时HD与HO重合,由Rt△AHO∽Rt△CBO,利用对应边的比例式为方程,可以算出HD=HO=,即HD+HO=1; ③当D在OA段时BD=1+x,AD=1-x,证明同①. (1)证明:AB是⊙O的直径 ∴∠AEB=90°,则∠ABC+∠BAE=90°, 又∵CD⊥AB, ∴∠BAE+∠AHD=90°, ∴∠AHD=∠ABC, 又∵∠ADH=∠CDB=90°, ∴△AHD∽△CBD. (2)【解析】 设OD=x,则BD=1-x,AD=1+x, ∵Rt△AHD∽Rt△CBD, 则HD:BD=AD:CD, 即HD:(1-x)=(1+x):2, 即HD=, 在Rt△HOD中,由勾股定理得: OH==, 所以HD+HO=+=1; ②当点E移动到使D与O重合的位置时,这时HD与HO重合,由Rt△AHO∽Rt△CBO,利用对应边的比例式为方程,可以算出HD=HO=,即HD+HO=1; ③当D在OA段时BD=1+x,AD=1-x,证明同①∵Rt△AHD∽Rt△CBD, 则HD:BD=AD:CD, 即HD:(1-x)=(1+x):2, 即HD=, 在Rt△HOD中,由勾股定理得: OH==, 所以HD+HO=+=1.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.

manfen5.com 满分网 查看答案
已知A、D是一段圆弧上的两点,且在直线l的同侧,分别过这两点作l的垂线,垂足为B、C,E是BC上一动点,连接AD、AE、DE,且∠AED=90度.
(1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD的长;
(2)如图②,若点E恰为这段圆弧的圆心,则线段AB、BC、CD之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当A、D分别在直线l两侧且AB≠CD,而其余条件不变时,线段AB、BC、CD之间又有怎样的等量关系?请直接写出结论,不必证明.manfen5.com 满分网
查看答案
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

manfen5.com 满分网 查看答案
如图,点C、D在线段AB上,△PCD是等边三角形.
(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;
(2)当△ACP∽△PDB时,求∠APB的度数.

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.
(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;
(3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.