满分5 > 初中数学试题 >

如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,...

如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,把四边形EFGH称为中点四边形.连接AC、BD,容易证明:中点四边形EFGH一定是平行四边形.
(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形.
当四边形ABCD的对角线满足______时,四边形EFGH为矩形;
当四边形ABCD的对角线满足______时,四边形EFGH为正方形;
(2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结论,并加以证明;
(3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少?

manfen5.com 满分网
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD. (2)由相似三角形的面积比等于相似比的平方求解.(3)由(2)可得S▱EFGH=S四边形ABCD=1 【解析】 (1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD; 若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD. (2)S△AEH+S△CFG=S四边形ABCD.(6分) 证明:在△ABD中, ∵EH=BD, ∴△AEH∽△ABD. ∴. 即S△AEH=S△ABD 同理可证:S△CFG=S△CBD ∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD.(8分) (3)由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD, 同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD, 故S▱EFGH=S四边形ABCD=1.(10分)
复制答案
考点分析:
相关试题推荐
如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的manfen5.com 满分网
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

manfen5.com 满分网 查看答案
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;
manfen5.com 满分网
(2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;
manfen5.com 满分网
(3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=manfen5.com 满分网,求BE2+DG2的值.
查看答案
如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
manfen5.com 满分网
查看答案
如图,在矩形ABCD中,AB=4,AD=10,直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E,我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(根据课本习题改编)如图1,在△ABC中,∠C=90°,AC=4,BC=3,四边形DEFG为△ABC的内接正方形,若设正方形的边长为x,容易算出x的长为manfen5.com 满分网
探究与计算:
(1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为______
(2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为______
(3)如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,请你猜想正方形的边长是多少?并对你的猜想进行证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.