满分5 > 初中数学试题 >

如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动...

如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于______
(2)当PQ∥AB时,P点离开D点的时间等于______秒;
(3)当P,Q,C三点构成直角三角形时,P点离开D点多少时间?

manfen5.com 满分网
(1)已知梯形各边的长,用勾股定理易求高以及其面积; (2)本题要找出线段之比,设要用x秒后PQ∥AB,已知,求出x的值即可; (3)本题有两种情况.当PQ⊥BC,利用求解.第二种是当QP⊥CD时,设P点离开D点x秒,利用线段比求解. 【解析】 (1)36; (2)分别延长BA和CD,交于点N, 则NA:NB=AD:BC,即 = NA=5,则ND=NA=5. 设用了x秒PQ∥AB,则DP=x,PC=5-x,CQ=2x. PC:CN=CQ:CB, ,x=. 即当PQ∥AB时,P点离开D点的时间等于秒; (3)当P,Q,C三点构成直角三角形时,有两种情况: ①当PQ⊥BC时,设P点离开D点x秒, 作DE⊥BC于E,∴PQ∥DE. ∴, ∴ ∴当PQ⊥BC时,P点离开D点秒. ②当QP⊥CD时,设P点离开D点x秒 ∵∠QPC=∠DEC=90°,∠C=∠C. ∴△QPC∽△DEC ∴ ∴ ∴当QP⊥CD时,点P离开点D秒. 由①②知,当P,Q,C三点构成直角三角形时,点P离开点D秒或秒.
复制答案
考点分析:
相关试题推荐
如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连接DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
(1)当x为何值时,△APD是等腰三角形;
(2)若设BE=y,求y关于x的函数关系式;
(3)若BC的长可以变化,是否存在点P,使得PQ经过点C?若不存在,请说明理由,若存在并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
manfen5.com 满分网
查看答案
如图,梯形ABCD中,AB∥DC,∠B=90°,E为BC上一点,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的长.

manfen5.com 满分网 查看答案
如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

manfen5.com 满分网 查看答案
如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.
(1)若a=4厘米,t=1秒,则PM=______厘米;
(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,把四边形EFGH称为中点四边形.连接AC、BD,容易证明:中点四边形EFGH一定是平行四边形.
(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形.
当四边形ABCD的对角线满足______时,四边形EFGH为矩形;
当四边形ABCD的对角线满足______时,四边形EFGH为正方形;
(2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结论,并加以证明;
(3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.