满分5 > 初中数学试题 >

如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分...

如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.

manfen5.com 满分网
(1)根据:两组对边分别平行的四边形是平行四边形,证明AG∥CE,AE∥CG即可; (2)解法1:在Rt△AEF中,运用勾股定理可将EF的长求出; 解法2,通过△AEF∽△ACB,可将线段EF的长求出. (1)证明:在矩形ABCD中, ∵AD∥BC, ∴∠DAC=∠BCA. 由题意,得∠GAH=∠DAC,∠ECF=∠BCA. ∴∠GAH=∠ECF, ∴AG∥CE. 又∵AE∥CG, ∴四边形AECG是平行四边形. (2)解法1:在Rt△ABC中, ∵AB=4,BC=3, ∴AC=5. ∵CF=CB=3, ∴AF=2. 在Rt△AEF中, 设EF=x,则AE=4-x. 根据勾股定理,得AE2=AF2+EF2, 即(4-x)2=22+x2. 解得x=,即线段EF长为cm. 解法2: ∵∠AFE=∠B=90°,∠FAE=∠BAC, ∴△AEF∽△ACB, ∴. ∴, 解得,即线段EF长为cm.
复制答案
考点分析:
相关试题推荐
如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a.
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;
第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.
则AD:AB的值是______

manfen5.com 满分网 查看答案
(1)如图,在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交BC于点F,某学生在研究这一问题时,发现如下事实:
①当manfen5.com 满分网时,有manfen5.com 满分网
②当manfen5.com 满分网时,有manfen5.com 满分网
③当manfen5.com 满分网时,有manfen5.com 满分网
manfen5.com 满分网时,参照上述研究结论,请你猜想用k表示EF的一般结论,并给出证明;
(2)现有一块直角梯形田地ABCD(如图所示),其中AB∥CD,AD⊥AB,AB=310米,DC=170米,AD=70米.若要将这块地分割成两块,由两农户来承包,要求这两块地均为直角梯形,且它们的面积相等.请你给出具体分割方案.manfen5.com 满分网
查看答案
如图,在△ABC的外接圆O中,D是manfen5.com 满分网的中点,AD交BC于点E,连接BD.
(1)列出图中所有相似三角形;
(2)连接DC,若在manfen5.com 满分网上任取一点K(点A,B,C除外),连接CK,DK,DK交BC于点F,DC2=DF•DK是否成立?若成立,给出证明;若不成立,举例说明.

manfen5.com 满分网 查看答案
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.

manfen5.com 满分网 查看答案
已知,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G.
(1)求证:AC2=AG•AF;
(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.