满分5 > 初中数学试题 >

已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=...

已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
图2和图3的结论一致,求解的方法也相同,以图2为例:过P作PE⊥AB于E,作PF⊥BC于F,仿照题干的做法,先证△PEM∽△PFN,得PN:PM=PF:PE;在Rt△ABC中,PF=PC,PE=PA,联立PC、PA的比例关系,即可得到PF:PE的值,从而求得PN、PM的比例关系. 【解析】 如图2,如图3中都有结论:PN=PM.(2分) 选如图2:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F; ∴四边形BFPE是矩形,∴∠EPF=90°, ∵∠EPM+∠MPF=∠FPN+∠MPF=90°, 可知∠EPM=∠FPN,∴△PFN∽△PEM,(2分) ∴=;(1分) 又∵Rt△AEP和Rt△PFC中:∠A=30°,∠C=60°, ∴PF=PC,PE=PA,(1分) ∴==;(1分) ∵PC=PA,∴=,即:PN=PM.(1分) 若选如图3,其证明过程同上(其他方法如果正确,可参照给分)
复制答案
考点分析:
相关试题推荐
如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.
(1)求AB的长;
(2)求CD的长;
(3)求∠BAD的大小.

manfen5.com 满分网 查看答案
我们已经知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形.
现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形.请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.
查看答案
在矩形ABCD中,AB=14,BC=8,E在线段AB上,F在射线AD上.
(1)沿EF翻折,使A落在CD边上的G处(如图1),若DG=4,
①求AF的长;
②求折痕EF的长;
(2)若沿EF翻折后,点A总在矩形ABCD的内部,试求AE长的范围.

manfen5.com 满分网 查看答案
如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.

manfen5.com 满分网 查看答案
如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a.
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;
第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.
则AD:AB的值是______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.