满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点...

如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,manfen5.com 满分网时,如图2,求manfen5.com 满分网的值;
(3)当O为AC边中点,manfen5.com 满分网时,请直接写出manfen5.com 满分网的值.

manfen5.com 满分网
(1)要求证:△ABF∽△COE,只要证明∠BAF=∠C,∠ABF=∠COE即可. (2)作OH⊥AC,交AD的延长线于H,易证△ABF≌△COE,进而证明△ABF∽△HOF,根据相似三角形的对应边的比相等,即可得出所求的值.同理可得(3)=n. (1)证明:∵AD⊥BC, ∴∠DAC+∠C=90°. ∵∠BAC=90°, ∴∠BAF=∠C. ∵OE⊥OB, ∴∠BOA+∠COE=90°, ∵∠BOA+∠ABF=90°, ∴∠ABF=∠COE. ∴△ABF∽△COE. (2)【解析】 过O作AC垂线交BC于H,则OH∥AB, 由(1)得∠ABF=∠COE,∠BAF=∠C. ∴∠AFB=∠OEC, ∴∠AFO=∠HEO, 而∠BAF=∠C, ∴∠FAO=∠EHO, ∴△OEH∽△OFA, ∴OF:OE=OA:OH 又∵O为AC的中点,OH∥AB. ∴OH为△ABC的中位线, ∴OH=AB,OA=OC=AC, 而, ∴OA:OH=2:1, ∴OF:OE=2:1,即=2; (3)【解析】 =n.
复制答案
考点分析:
相关试题推荐
如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是manfen5.com 满分网上一点,连接AF交CE于H,连接AC、CF、BD、OD.
(1)求证:△ACH∽△AFC;
(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;
(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足manfen5.com 满分网+|OA-1|=0.
(1)求点A、点B的坐标;
(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连接AP,设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式;
(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
查看答案
如图,AD=2,AC=4,BC=6,∠B=36°,∠D=117°,△ABC∽△DAC.
(1)求AB的长;
(2)求CD的长;
(3)求∠BAD的大小.

manfen5.com 满分网 查看答案
我们已经知道:如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形.
现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形.请指出其中哪几对是相似图形,哪几对不是相似图形,并简单地说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.