满分5 > 初中数学试题 >

如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=1...

如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.
求证:
(1)AD=BD=BC;
(2)点D是线段AC的黄金分割点.

manfen5.com 满分网
(1)根据三角形的内角和是180度,和题中给出的角的度数,可求得各角的度数,从而得出AD=BD=BC. (2)利用三角形的相似来证明点D是线段AC的黄金分割点. 证明:(1)∵∠A=36°,∠C=72°, ∴∠ABC=72°,∠ADB=108°, ∴∠ABD=36°, ∴△ADB、△BDC是等腰三角形, ∴AD=BD=BC. (2)∵∠DBC=∠A=36°,∠C=∠C, ∴△ABC∽△BDC, ∴BC:AC=CD:BC, ∴BC2=AC•DC, ∵BC=AD, ∴AD2=AC•DC, ∴点D是线段AC的黄金分割点.
复制答案
考点分析:
相关试题推荐
若一个矩形的短边与长边的比值为manfen5.com 满分网(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=manfen5.com 满分网AB,OD=2.
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比manfen5.com 满分网
①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.

manfen5.com 满分网 查看答案
宽与长之比为manfen5.com 满分网:1的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,如图,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.

manfen5.com 满分网 查看答案
宽与长的比是manfen5.com 满分网的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):
第一步:作一个正方形ABCD;
第二步:分别取AD,BC的中点M,N,连接MN;
第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;
第四步:过E作EF⊥AD,交AD的延长线于F.
请你根据以上作法,证明矩形DCEF为黄金矩形.

manfen5.com 满分网 查看答案
一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看.如图,是一个参加空姐选拔的选手的身高情况,那么她应穿多高的鞋子才能好看?(精确到1cm)
参考数据:黄金分割比为manfen5.com 满分网manfen5.com 满分网=2.236.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.