满分5 > 初中数学试题 >

A.某中学师生在劳动基地活动时,看到木工师傅在材料边角处画直角时,用了一种“三弧...

A.某中学师生在劳动基地活动时,看到木工师傅在材料边角处画直角时,用了一种“三弧法”.方法是:
①画线段AB,分别以A,B为圆心,AB长为半径画弧相交于C;
②以C为圆心,仍以AB长为半径画弧交AC的延长线于D;
③连接DB.则∠ABD就是直角.
(1)请你就∠ABD是直角作出合理解释;
(2)现有一长方形木块的残留部分如图,其中AB,CD整齐且平行,BC,AD是参差不齐的毛边.请你在毛边附近用尺规画一条与AB,CD都垂直的边(不写作法,保留作图痕迹);
manfen5.com 满分网
B.如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.
(1)写出图中所有相等的线段,并选择其中一对给予证明;
(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.
manfen5.com 满分网
A(1)在连接BC后,由作图过程可知,AC=BC=AB=CD所以∠1=∠2,∠4=∠5,又∠1+∠2+∠5+∠4=2(∠2+∠5)=180°所以∠ABD=90° (2)作图过程可以参照(1),解释相同. B(1)因为CE和BD垂直,且∠BDC=60°,所以∠ECD=30°,所以ED=CD,又CD=2DA,所以DE=DA.∠DAE=∠DEA=30°,CE=EA 又∠DAB=45°,∴∠ABD=∠CDB-∠BAD=15°,所以BE=AE. (2)△ADE∽△AEC,又(1)知,∠EAD=DEA=∠ACE,所以△ADE∽△AEC. A题【解析】 (1)解法一:由作图知,AB=BC=CD=AB,∴BC=AD 根据三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形, 这条边所对的角就是直角,即∠ABD是直角. 解法二:由作图知,AC=BC=CD=AB, 所以△ABC为等边三角形.△BCD为等腰三角形, ∠1=∠2=∠3=60°,∠4=∠5,∠3=∠4+∠5=60°,∠5=30°, ∴∠ABD=90度. (本题说明方法较多,只要合理均可给分) (2)(3分)如图所示. B题【解析】 (1)ED=DA,EA=EB=EC.(2分) 证明:∵CE⊥BD,∴△CED是Rt△.(3分) ∵∠BDC=60°,∴∠ECD=30度.(4分) ∴CD=2DE.(5分) ∵CD=2DA,∴DE=DA.(6分) (2)有.△ADE∽△AEC.
复制答案
考点分析:
相关试题推荐
已知Rt△ABC中,∠B=90°.
(1)根据要求作图(尺规作图,保留作图痕迹,不写画法).
①作∠BAC的平分线AD交BC于D;
②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;
③连接ED.
(2)在(1)的基础上写出一对相似比不为1的相似三角形和一对全等三角形:
______∽△______;△______≌△______
并选择其中一对加以证明.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且manfen5.com 满分网=manfen5.com 满分网.点P是⊙C上一动点(P点与A、B点不重合).连接BP、AP.
(1)求∠BPA的度数;
(2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,已知△ABC三顶点在⊙O上,D为manfen5.com 满分网的中点,AD与BC相交于点E,AC的延长线交过C、D、E三点的圆⊙O1于点F.
(1)求证:∠BAD=∠DFE;
(2)求证:△AEC∽△FED;
(3)AB=AD是否成立?若成立则证明之,若不成立,则请你增加一个条件使其成立,并说明理由.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,过C作CD∥AB与⊙O相交于D点,E是CD上一点,且满足AD=DE,连接BD与AE相交于点F.求证:△ADF∽△ABC.

manfen5.com 满分网 查看答案
如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.