满分5 > 初中数学试题 >

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠D...

已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:①BE=CD;②△AMN是等腰三角形;
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;
(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

manfen5.com 满分网
(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△BAE≌△CAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证△AMN是等腰三角形. (2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变. (3)先证出△ABM≌△ACN(SAS),可得出∠CAN=∠BAM,所以∠BAC=∠MAN(等角加等角和相等),又∵∠BAC=∠DAE,所以∠MAN=∠DAE=∠BAC,所以△AMN,△ADE和△ABC都是顶角相等的等腰三角形,所以∠PBD=∠AMN,所以△PBD∽△AMN(两个角对应相等,两三角形相似). (1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD, ∵AB=AC,AD=AE, ∴△ABE≌△ACD, ∴BE=CD. ②由△ABE≌△ACD,得 ∠ABE=∠ACD,BE=CD, ∵M、N分别是BE,CD的中点, ∴BM=CN. 又∵AB=AC, ∴△ABM≌△ACN. ∴AM=AN,即△AMN为等腰三角形. (2)【解析】 (1)中的两个结论仍然成立. (3)证明:在图②中正确画出线段PD, 由(1)同理可证△ABM≌△ACN, ∴∠CAN=∠BAM∴∠BAC=∠MAN. 又∵∠BAC=∠DAE, ∴∠MAN=∠DAE=∠BAC. ∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形. ∴△PBD和△AMN都为顶角相等的等腰三角形, ∴∠PBD=∠AMN,∠PDB=∠ANM, ∴△PBD∽△AMN.
复制答案
考点分析:
相关试题推荐
如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.

manfen5.com 满分网 查看答案
如图,点D,E在BC上,且FD∥AB,FE∥AC.
求证:△ABC∽△FDE.

manfen5.com 满分网 查看答案
如图,直线DE经过⊙O上的点C,并且OE=OD,EC=DC,⊙O交直线OD于A、B两点,连接BC,AC,OC.求证:
(1)OC⊥DE;
(2)△ACD∽△CBD.

manfen5.com 满分网 查看答案
如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.
(1)求证:△CDF∽△BGF;
(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.

manfen5.com 满分网 查看答案
如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E为x轴上的点,且S△AOE=manfen5.com 满分网,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.