满分5 > 初中数学试题 >

已知∠MON=90°,等边三角形ABC的一个顶点A是射线OM上的一定点,顶点B与...

已知∠MON=90°,等边三角形ABC的一个顶点A是射线OM上的一定点,顶点B与点O重合,顶点C在∠MON内部.
(1)当顶点B在射线ON上移动到B1时,连接AB1,请在∠MON内部作出以AB1为一边的等边三角形AB1C1(保留作图痕迹,不写作法和证明);
(2)设AB1与OC交于点Q,AC的延长线与B1C1交于点D.求证:△ACQ∽△AB1D;
(3)连接CC1,试猜想∠ACC1为多少度?并证明你的猜想.

manfen5.com 满分网
(1)分别以A、B1为圆心,AB1为半径,作弧在∠MON内部交于C1; (2)两三角形有一公共角,且∠ACQ=∠AB1D=60°,即可证明△ACQ∽△AB1D; (3)猜测∠ACC1=90°,证明△AOB1≌△ACC1最后根据全等三角形的对应角相等即可求出. 【解析】 (1)作图如图. (2)∵∠CAQ=∠B1AD,∠ACQ=∠AB1D=60°, ∴△ACQ∽△AB1D(AA). (3)猜测∠ACC1=90°. ∵OA=AC,∠OAB1=∠CAC1=60°-∠CAQ,AB1=AC1, ∴△AOB1≌△ACC1(SAS), ∴∠ACC1=∠AOB1=90°. 故∠ACC1为90度.
复制答案
考点分析:
相关试题推荐
已知:在⊙O中,CD平分∠ACB,弦AB、CD相交于点E,连接AD、BD.
(1)写出图中3对相似的三角形(不必证明);
(2)找出图中相等的线段,并说出理由.

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,点D、E分别在边AB、AC上,连接DE并延长交BC的延长线于点F,连接DC、BE.若∠BDE+∠BCE=180度.
(1)写出图中三对相似三角形(注意:不得添加字母和线);
(2)请在你所找出的相似三角形中选取一对,说明它们相似的理由.

manfen5.com 满分网 查看答案
已知:如图,Rt△ABC中,∠BAC=90°,D是AC上一点,∠ABD=∠C,直线EF过点D,与BA的延长线相交于F,且EF⊥BC,垂足为E.
(1)写出图中所有与△ABD相似的三角形;
(2)探索:设manfen5.com 满分网,是否存在这样的t值,使得△ADF∽△EDB?说明理由.

manfen5.com 满分网 查看答案
本题为选项做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
manfen5.com 满分网
甲:直线l:y=(m-3)x+n-2(m,n为常数)的图象如图1所示,化简:|m-n|-manfen5.com 满分网
乙:已知:如图2,在边长为a的正方形ABCD中,M是边AD的中点,能否在边AB上找到点N(不含A、B),使得△MAN相似?若能,请给出证明;若不能,请说明理由.
查看答案
如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交边BC于点E,连接BD.
(1)根据题设条件,请你找出图中各对相似三角形;
(2)请选择其中的一对相似三角形加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.