满分5 > 初中数学试题 >

在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一...

manfen5.com 满分网在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3manfen5.com 满分网,AE=3,求AF的长.
(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD和∠C是等角的补角,由此可判定两个三角形相似; (2)在Rt△ABE中,由勾股定理易求得BE的长,即可求出EC的值;从而根据相似三角形得出的成比例线段求出AF的长. (1)证明:∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD, ∴∠ADF=∠CED,∠B+∠C=180°; ∵∠AFE+∠AFD=180°,∠AFE=∠B, ∴∠AFD=∠C, ∴△ADF∽△DEC; (2)【解析】 ∵CD=AB=4,AE⊥BC, ∴AE⊥AD; 在Rt△ADE中,DE=, ∵△ADF∽△DEC, ∴; ∴,AF=.
复制答案
考点分析:
相关试题推荐
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

manfen5.com 满分网 查看答案
如图CE是等边三角形ABC边AB边上的高,AB=4,DA⊥AB,DA=manfen5.com 满分网,BD与CE、CA分别交于点F、M.
(1)求CF的长;
(2)求△ABM的面积.

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.
(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;
(3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数)

manfen5.com 满分网 查看答案
在Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC所在的直线上运动,作∠ADE=45°(A,D,E按逆时针方向).
(1)如图1,若点D在线段BC上运动,DE交AC于E.
①求证:△ABD∽△DCE;
②当△ADE是等腰三角形时,求AE的长.
(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E,是否存在点D,使△ADE'是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;
②如图3,若点D在BC的反向延长线上运动,是否存在点D,使△ADE是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.
manfen5.com 满分网
查看答案
阅读下列材料,按要求解答问题:
如图1,在△ABC中,∠A=2∠B,且∠A=60度.小明通过以下计算:由题意,∠B=30°,∠C=90°,c=2b,a=manfen5.com 满分网b,得a2-b2=(manfen5.com 满分网b)2-b2=2b2=b•c.即a2-b2=bc.于是,小明猜测:对于任意的△ABC,当∠A=2∠B时,关系式a2-b2=bc都成立.
(1)如图2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;
(2)如图3,你认为小明的猜想是否正确?若认为正确,请你证明;否则,请说明理由;
(3)若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.