如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A,C重合),过点F分别作x轴、y轴的垂线,垂足为G,E.设四边形BCFE的面积为S
1,四边形CDGF的面积为S
2,△AFG的面积为S
3.
(1)试判断S
1,S
2的关系,并加以证明;
(2)当S
3:S
2=1:3时,求点F的坐标;
(3)如图2,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A′E′F′,且A′,F′两点始终在直线AC上,是否存在这样的点E′,使点E′到x轴的距离与到y轴的距离比是5:4?若存在,请求出点E′的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,在矩形ABCD中(AB>AD),E为线段AD上的一个动点(点E不与A,D两点重合),连接FC,过E点作EF⊥EC交AB于F,连接FC.
(1)△AEF与△DCE是否相似?并说明理由;
(2)E点运动到什么位置时,EF平分∠AFC,证明你的结论.
查看答案
小丽参加数学兴趣小组活动,提供了下面3个有联系的问题,请你帮助解决:
(1)如图1,正方形ABCD中,作AE交BC于E,DF⊥AE交AB于F,求证:AE=DF;
(2)如图2,正方形ABCD中,点E,F分别在AD,BC上,点G,H分别在AB,CD上,且EF⊥GH,求
的值;
(3)如图3,矩形ABCD中,AB=a,BC=b,点E,F分别在AD,BC上,且EF⊥GH,求
的值.
查看答案
已知:矩形ABCD中,AB=1,点M在对角线AC上,直线l过点M且与AC垂直,与AD相交于点E.
(1)如果直线l与边BC相交于点H(如图1)AM=
AC且AD=a,求的AE长(用含a的代数式表示);
(2)在(1)中,直线l把矩形分成两部分的面积比为2:5,求a的值;
(3)若AM=
AC,且直线l经过点B(如图2),求AD的长;
(4)如果直线l分别与边AD,AB相交于点E,F,AM=
AC,设AD的长为x,△AEF的面积为y,求y与x的函数关系式,并指出x的取值范围(求x的取值范围可不写过程).
查看答案
如图1,半圆O为△ABC的外接半圆,AC为直径,D为
上的一动点.
(1)问添加一个什么条件后,能使得
?请说明理由;
(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;
(3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.
查看答案
如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似.
查看答案