满分5 > 初中数学试题 >

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形. 探究...

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:
(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为SN
①若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式.(不必证明)manfen5.com 满分网

manfen5.com 满分网
(1)过直角顶点作斜边的垂线即可得出两个与原直角三角形相似的三角形.由于这两个三角形都与原三角形共用一个锐角,又都有一个直角,因此有两个对应角相等,因此都与原三角形相似. (2)由图可知,每分割一次得到的图形的小三角形的个数都是前面一个图形中小三角形的个数的4倍,因此当第n个图时,如果设原三角形的面积为S,那么小三角形的面积应该是Sn=, ①按所求的公式进行计算,看n是多少时Sn的值在2和3之间. ②Sn==,Sn-1==,Sn+1== 由此可看出Sn2=Sn-1•Sn+1 【解析】 (1)如图:割线CD就是所求的线段. 理由:∵∠B=∠B,∠CDB=∠ACB=90°, ∴△BCD∽△ACB. (2)①△DEF经N阶分割所得的小三角形的个数为, ∴Sn=.(7分) 当n=5时,S5=≈9.77, 当n=6时,S6=≈2.44, 当n=7时,S7=≈0.61, ∴当n=6时,2<S6<3. ②Sn2=Sn-1×Sn+1.
复制答案
考点分析:
相关试题推荐
如图,在锐角三角形ABC中,D为BC边的中点,F为AB边所在的直线上一点,连接CF交AD延长线于E,已知EC=manfen5.com 满分网CF,问:
(1)F点此时的位置;
(2)求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3.
(1)求manfen5.com 满分网的值;
(2)求BC的长.

manfen5.com 满分网 查看答案
如图,在Rt△ABC和Rt△DEF中,∠ABC=90°,AB=4,BC=6,∠DEF=90°,DE=EF=4.
(1)移动△DEF,使边DE与AB重合(如图1),再将△DEF沿AB所在直线向左平移,使点F落在AC上(如图2),求BE的长;
(2)将图2中的△DEF绕点A顺时针旋转,使点F落在BC上,连接AF(如图3).请找出图中的全等三角形,并说明它们全等的理由.(不再添加辅助线,不再标注其它字母)
manfen5.com 满分网
查看答案
如图①,在Rt△ABC中,∠BAC=90°,AB=AC=manfen5.com 满分网,D、E两点分别在AC、BC上,且DE∥AB,CD=manfen5.com 满分网.将△CDE绕点C顺时针旋转,得到△CD′E′(如图②,点D′、E′分别与点D、E对应),点E′在AB上,D′E′与AC相交于点M.
(1)求∠ACE′的度数;
(2)求证:四边形ABCD′是梯形;
(3)求△AD′M的面积.

manfen5.com 满分网 查看答案
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.
(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的式子表示);
(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°manfen5.com 满分网;在图⑤中,∠AFB与∠α的数量关系是______.请你任选其中一个结论证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.