满分5 > 初中数学试题 >

已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P...

已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是______;②当k=2时,是______;③当k=3时,是______.并证明k=2时的结论.

manfen5.com 满分网
(1)△BOP和△DOE中,已知的条件有:对顶角∠EOD=∠POB;根据AD∥BC,可得出内错角∠OED=∠OPB,由此可判定两个三角形相似; (2)由于E是AD中点,且AD:BC=2:3,得BC=3DE=3AE; ①当k=1时,△ODE和△OBP全等,则DE=BP=AE,又由AE∥BP,则四边形AEPB的对边平行且相等,由此得出四边形AEPB是平行四边形; ②当k=2时,BP=2DE,此时PC=BC-BP=DE,易证得四边形DEPC是矩形,则四边形AEPB是直角梯形; ③当k=3时,BP=3DE,此时P、C重合,可过A、E分别作BC的垂线,设垂足为M、N;根据①②的解题过程易知BM=MN=CN=DE,可证△AMB≌△ENC,得出AB=EC(即EP),由此可证得四边形ABCD是等腰梯形. (1)证明: ∵AD∥BC ∴∠OBP=∠ODE. 又∠BOP=∠DOE, ∴△BOP∽△DOE;(有两个角对应相等的两三角形相似); (2)【解析】 ①平行四边形; ②直角梯形; ③等腰梯形; 证明:②当k=2时,, ∴BP=2DE=AD 又∵AD:BC=2:3,即BC=AD, ∴PC=BC-BP=AD-AD=AD=ED, 又ED∥PC, ∴四边形PCDE是平行四边形, ∵∠DCB=90° ∴四边形PCDE是矩形(7分) ∴∠EPB=90°(8分) 又∵在直角梯形ABCD中 AD∥BC,AB与DC不平行 ∴AE∥BP,AB与EP不平行 四边形ABPE是直角梯形.(9分) (本题其它证法参照此标准给分)
复制答案
考点分析:
相关试题推荐
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E.
(1)求证:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的长.

manfen5.com 满分网 查看答案
如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2manfen5.com 满分网),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3manfen5.com 满分网,请直接写出点F的坐标.manfen5.com 满分网
查看答案
如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
manfen5.com 满分网
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?
查看答案
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
查看答案
如下图,在⊙O中,点P在直径AB上运动,但与A、B两点不重合,过点P作弦CE⊥AB,在manfen5.com 满分网上任取一点D,直线CD与直线AB交于点F,弦DE交直线AB于点M,连接CM.
(1)如图1,当点P运动到与O点重合时,求∠FDM的度数.
(2)如图2、图3,当点P运动到与O点不重合时,求证:FM•OB=DF•MC.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.