满分5 > 初中数学试题 >

如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点. ...

如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点.
(1)求证:△ADE≌△BCF;
(2)若AD=4cm,AB=8cm,求CF的长.

manfen5.com 满分网
(1)根据矩形的对边相等、对角线相等且相互平分等性质可证△ADE≌△BCF; (2)要求CF的长,若CF在一直角三角形中,则可用勾股定理求解.由此需要添加辅助线,过点F作FG⊥CD于点G,则△DFG∽△DBC;由(1)的结论可得DF=3FB,则可算出FG、DG的值,进而求得CF的长. (1)证明:∵四边形ABCD为矩形 ∴AD=BC,OA=OC,OB=OD,AC=BD,AD∥BC ∴OA=OB=OC,∠DAE=∠OCB(两直线平行,内错角相等) ∴∠OCB=∠OBC ∴∠DAE=∠CBF 又∵AE=OA,BF=OB ∴AE=BF ∴△ADE≌△BCF; (2)【解析】 过点F作FG⊥CD于点G, ∴∠DGF=90° ∵四边形ABCD是矩形, ∴∠DCB=90° ∴∠DGF=∠DCB 又∵∠FDG=∠BDC ∴△DFG∽△DBC ∴ 由(1)可知F为OB的中点, 所以DF=3FB,得 ∴ ∴FG=3,DG=6 ∴GC=DC-DG=8-6=2 在Rt△FGC中,cm. (说明:其他解法可参照给分,如延长CF交AB于点H,利用△DFC∽△BFH计算.)
复制答案
考点分析:
相关试题推荐
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
manfen5.com 满分网
查看答案
E、F为平行四边形ABCD的对角线DB上三等分点,连AE并延长交DC于P,连PF并延长交AB于Q,如图①
(1)在备用图中,画出满足上述条件的图形,记为图②,试用刻度尺在图①、②中量得AQ、BQ的长度,估计AQ、BQ间的关系,并填入下表:(长度单位:cm)
AQ长度BQ长度AQ、BQ间的关系
图①中
图②中
由上表可猜测AQ、BQ间的关系是AQ=3QB;
(2)上述(1)中的猜测AQ、BQ间的关系成立吗?为什么?
(3)若将平行四边形ABCD改为梯形(AB∥CD)其他条件不变,此时(1)中猜测AQ、BQ间的关系是否成立?(不必说明理由)
manfen5.com 满分网
查看答案
如图,△ABC内接于⊙O,直径CD⊥AB,垂足为E,弦BF交CD于点M,交AC于点N,且BF=AC,连接AD、AMmanfen5.com 满分网
求证:(1)△ACM≌△BCM;
(2)AD•BE=DE•BC;
(3)BM2=MN•MF.
查看答案
(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.

manfen5.com 满分网 查看答案
如图:在平行四边形ABCD中,E是AD上的一点.求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.