满分5 > 初中数学试题 >

已知如图,点A(m,3)与点B(n,2)关于直线y=x对称,且都在反比例函数y=...

已知如图,点A(m,3)与点B(n,2)关于直线y=x对称,且都在反比例函数y=manfen5.com 满分网的图象上,点D的坐标为(0,-2).
(1)求反比例函数的解析式;
(2)若过B,D的直线与x轴交于点C,求sin∠DCO的值.

manfen5.com 满分网
(1)由点A(m,3)与点B(n,2)关于直线y=x对称,根据对称特点,易求m、n,从而用待定系数法可求反比例函数的解析式; (2)由点B、D坐标能求直线BD解析式,进而易求点C坐标;根据坐标意义,可求OC、OD、CD长度,运用三角函数定义就能解出sin∠DCO的值. 【解析】 (1)∵A(m,3)与B(n,2)关于直线y=x对称, ∴m=2,n=3, 即A(2,3),B(3,2). 于是由3=, ∴k=6, ∴反比例函数的解析式为y=; (2)设直线的解析式为y=kx+b, 将B(3,2),D(0,-2)代入得:, 解得:, 故直线BD的解析式为y=x-2, ∴当y=0时, ∴x=1.5. 即C(1.5,0), 于是OC=1.5,DO=2, 在Rt△OCD中,DC=, ∴sin∠DCO=. 说明:过点B作BE⊥y轴于E,则BE=3,DE=4,从而BD=5,sin∠DCO=sin∠DBE=.
复制答案
考点分析:
相关试题推荐
已知双曲线y=manfen5.com 满分网与直线y=manfen5.com 满分网相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=manfen5.com 满分网上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=manfen5.com 满分网于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

manfen5.com 满分网 查看答案
如图,直线y=x+1与双曲线y=manfen5.com 满分网交于A、B两点,其中A点在第一象限.C为x轴正半轴上manfen5.com 满分网一点,且S△ABC=3.
(1)求A、B、C三点的坐标;
(2)在坐标平面内,是否存在点P,使以A、B、C、P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y=manfen5.com 满分网的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式;
(3)在平面直角坐标系中,点P的坐标为(5,0),点Q的坐标为(0,3),把线段PQ向右平移4个单位,然后再向上平移2个单位,得到线段P1Q1,则点P1的坐标为______,点Q1的坐标为______
manfen5.com 满分网manfen5.com 满分网
查看答案
已知反比例函数y=manfen5.com 满分网的图象与一次函数y=x+m的图象相交于点(1,-3).
(1)求这两个函数的解析式;
(2)求这两个函数图象的另一个交点的坐标.
查看答案
阅读理【解析】

对于任意正实数a,b,∵manfen5.com 满分网≥0,∴a-manfen5.com 满分网+b≥0,∴a+b≥2manfen5.com 满分网,只有点a=b时,等号成立.
结论:在a+b≥2manfen5.com 满分网(a,b均为正实数)中,若ab为定值p,则a+b≥manfen5.com 满分网,只有当a=b时,a+b有最小值2manfen5.com 满分网
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时,m+manfen5.com 满分网有最小值______
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥manfen5.com 满分网,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线manfen5.com 满分网上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.