根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S=|k|可知,S△AOC=S△BOD=|k|,再根据反比例函数的对称性可知,O为DC中点,则S△AOD=S△AOC=|k|,S△BOC=S△BOD=|k|,进而求出四边形ADBC的面积.
【解析】
∵A,B是函数y=的图象上关于原点O对称的任意两点,且AC平行于y轴,BD平行于y轴,
∴S△AOC=S△BOD=,
假设A点坐标为(x,y),则B点坐标为(-x,-y),
则OC=OD=x,
∴S△AOD=S△AOC=,S△BOC=S△BOD=,
∴四边形ADBC面积=S△AOD+S△AOC+S△BOC+S△BOD=×4=2.
故选C.