满分5 > 初中数学试题 >

附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,...

附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网
(1)将A(3,2)分别代入y=,y=ax中,得ak的值,进而可得正比例函数和反比例函数的表达式; (2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值; (3)有S△OMB=S△OAC=×|k|=3,可得S矩形OBDC为12;即OC•OB=12;进而可得mn的值,故可得BM与DM的大小;比较可得其大小关系. 【解析】 (1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2 ∴k=6,a=(2分) ∴反比例函数的表达式为:y=(3分) 正比例函数的表达式为y=x(4分) (2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值.(6分) (3)BM=DM(7分) 理由:∵MN∥x轴,AC∥y轴, ∴四边形OCDB是平行四边形, ∵x轴⊥y轴, ∴▱OCDB是矩形. M和A都在双曲线y=上, ∴BM×OB=6,OC×AC=6, ∴S△OMB=S△OAC=×|k|=3,又S四边形OADM=6, ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12, 即OC•OB=12 ∵OC=3 ∴OB=4(8分) 即n=4 ∴m= ∴MB=,MD=3-= ∴MB=MD(9分).
复制答案
考点分析:
相关试题推荐
市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了该项工程运送土石方的任务.
(1)运输公司平均每天的工作量v(m3/天)与完成运送任务所需的时间t(天)之间有怎样的函数关系;
(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3,则公司完成全部运输任务需要多长时间?
(3)当公司以问题(2)中的速度工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,公司至少需要再增加多少辆卡车才能按时完成任务?
查看答案
李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付之后每月付款y元,x月结清余款.y与x的函数关系如图所示,试根据图象提供的信息回答下列问题.
(1)确定y与x的函数关系式,并求出首付款的数目;
(2)李先生若用4个月结清余款,每月应付多少元?
(3)如打算每月付款不超过500元,李先生至少几个月才能结清余款?

manfen5.com 满分网 查看答案
manfen5.com 满分网为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:
(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
查看答案
在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积v(单位:m3)的反比例函数,它的图象如图所示.
(1)求ρ与v之间的函数关系式并写出自变量v的取值范围;
(2)求当v=10m3时气体的密度ρ.

manfen5.com 满分网 查看答案
某气球内充满了一定质量的气体,当温度不变时,气球内的气压p(kpa)与气体体积v(m3)成反比例函数,其图象如图所示,当气球内的气压大于140kpa时,气球将会爆炸,为了安全起见,请你求出气体体积的范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.