满分5 > 初中数学试题 >

己知:如图,梯形ABCD中,AD∥BC,BC⊥y轴于C,AD=1,BC=4,ta...

己知:如图,梯形ABCD中,AD∥BC,BC⊥y轴于C,AD=1,BC=4,tan∠ABC=manfen5.com 满分网.反比例函数y=manfen5.com 满分网的图象过顶点A、B.
(1)求k的值;
(2)作BH⊥x轴于H,求五边形ABHOD的面积.

manfen5.com 满分网
(1)根据三角函数的定义,把∠ABC放在直角三角形中,所以作AE⊥BC于点E,由已知可求CD长,即是A、B两点纵坐标的差,据此得方程求k值; (2)S五边形ABHOD=S梯形ABCD+S矩形BHOC. 【解析】 (1)作AE⊥BC于点E, BE=BC-AD=4-1=3,(1分) , ∴AE=DC=2,(2分) 设A(-1,y1)B(-4,y2), ∴y1=-k,, ∵y1-y2=CD=2, ∴,(4分) ∴;(5分) (2)∵, ∴, ∴当x=-4时,, ∴,(6分) ∴S五边形ABHOD=S梯形ABCD+S矩形BHOC==(8分).
复制答案
考点分析:
相关试题推荐
如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限,点C在第三象限.
(1)求双曲线的解析式;
(2)求B点的坐标;
(3)若S△AOB=2,求A点的坐标;
(4)在(3)的条件下,在x轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线manfen5.com 满分网交于点A、C,其中点A在第一象限,点C在第三象限.
(1)求B点的坐标;
(2)若S△AOB=2,求A点的坐标;
(3)在(2)的条件下,在y轴上是否存在点P,使△AOP是等腰三角形?若存在,请直接写出P点的坐标.

manfen5.com 满分网 查看答案
如图,正比例函数manfen5.com 满分网与反比例函数manfen5.com 满分网的图象相交于A、B两点,过B作BC⊥x轴,垂足为C,且△BOC的面积等于4.
(1)求k的值;
(2)求A、B两点的坐标;
(3)在x轴的正半轴上是否存在一点P,使得△POA为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,已知点A(4,m),B(-1,n)在反比例函数y=manfen5.com 满分网的图象上,直线AB分别与x轴,y轴相交于C,D两点.
(1)求直线AB的解析式;
(2)求C,D两点坐标;
(3)S△AOC:S△BOD是多少?

manfen5.com 满分网 查看答案
已知:反比例函数manfen5.com 满分网manfen5.com 满分网在平面直角坐标系xOy第一象限中的图象如图所示,点A在manfen5.com 满分网的图象上,AB∥y轴,与manfen5.com 满分网的图象交于点B,AC、BD与x轴平行,分别与manfen5.com 满分网manfen5.com 满分网的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC的面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.