满分5 > 初中数学试题 >

已知:如图,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是...

已知:如图,四边形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一点,PE⊥BC,PF⊥CD,垂足分别为E、F.
(1)求证:PA=EF;
(2)若BD=10,P是BD的中点,sin∠BAP=manfen5.com 满分网,求四边形PECF的面积.

manfen5.com 满分网
(1)连接PC、EF,根据条件AB=CB,∠ABD=∠CBD,BD=BD,判定△ABD≌△CBD得到AD=CD,∠ADB=∠CDB,从而判定△ADP≌△CDP所以AP=PC=EF; (2)利用sin∠BAP=,求出EP•FP=3×4=12,即四边形PECF的面积为12. 【解析】 (1)连接PC、EF. ∵AB=CB,∠ABD=∠CBD,BD=BD, ∴△ABD≌△CBD, ∴∠BAD=∠BCD=90°, ∴AD=CD,∠ADB=∠CDB. 又∵DP=DP, ∴△ADP≌△CDP. ∴AP=PC,AP=EF. (2)∵AP=PC,AP=EF,∠C=90°, ∴四边形PECF是矩形, 若BD=10,在Rt△BAD中, ∵P为BD中点, ∴AP=BD=5, ∴PC=EF=5. ∵sin∠BAP=, ∴sin∠PCE=, ∴EP=3,FP=4, ∴EP•FP=3×4=12. 即四边形PECF的面积为12.
复制答案
考点分析:
相关试题推荐
如图,AB是半圆O的直径,C为半圆上一点,E是BC的中点,AE交BC于点D,DF⊥AB于F,F为垂足,连接CF.
(1)判断△CDF的形状,并证明你的结论;
(2)若AC=8,cos∠CAB=manfen5.com 满分网,求线段BC和CD的长.

manfen5.com 满分网 查看答案
如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE∥AB,交∠BCD的平分线于点E,连接BE.
(1)求证:BC=CD;
(2)将△BCE绕点C,顺时针旋转90°得到△DCG,连接EG.求证:CD垂直平分EG;
(3)延长BE交CD于点P.求证:P是CD的中点.

manfen5.com 满分网 查看答案
manfen5.com 满分网我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数manfen5.com 满分网的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是______
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由.
查看答案
如图1所示,以点M(-1,O)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-manfen5.com 满分网x-manfen5.com 满分网与⊙M相切于点H,交x轴于点E,交y轴于点F.
(1)请直接写出OE,⊙M的半径r,CH的长;
(2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
(3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
manfen5.com 满分网manfen5.com 满分网
查看答案
如图,一次函数的图象经过M点,与x轴交于A点,与y轴交于B点,根据图中信息求:
(1)这个函数的解析式;
(2)tan∠BAO.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.