满分5 > 初中数学试题 >

如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在...

如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4.
(1)求点C的坐标;
(2)如图,将△ACB绕点C按顺时针方向旋转30°到△A′CB′的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)
(3)在(2)的基础上,将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为manfen5.com 满分网时,求直线CE的函数表达式.
manfen5.com 满分网
(1)首先在Rt△ACO中,根据∠CAO=30°解直角三角形可以得到OA,OC的长,然后就可以得到点C的坐标; (2)根据已知条件容易得到△A′EF≌△AGF或△B′GC≌△CEO或△A′GC≌△AEC; (3)过点E1作E1M⊥OC于点M,利用S△COE1=4和∠E1OM=60°可以求出点E1的坐标,然后利用待定系数法确定直线CE的解析式.此题有两种情况,分别是E在第二或四象限里. 【解析】 (1)∵在Rt△ACO中,∠CAO=30°,OA=4, ∴OC=2, ∴C点的坐标为(-2,0). (2)△A′EF≌△AGF或△B′GC≌△CEO或△A′GC≌△AEC. (3)如图1,过点E1作E1M⊥OC于点M. ∵S△COE1=CO•E1M=, ∴E1M=. ∵在Rt△E1MO中,∠E1OM=60°,则, ∴, ∴点E1的坐标为(). 设直线CE1的函数表达式为y=k1x+b1,则 , 解得. ∴. 同理,如图2所示,点E2的坐标为(). 设直线CE2的函数表达式为y=k2x+b2,则, 解得. ∴.
复制答案
考点分析:
相关试题推荐
已知关于x的方程x2-2(m-1)x+m2-3=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)已知a、b、c分别是△ABC的内角∠A、∠B、∠C的对边,∠C=90°,且tanB=manfen5.com 满分网,c-b=4,若方程的两个实数根的平方和等于△ABC的斜边c的平方,求m的值.
查看答案
如图,一艘轮船向正东方向航行,上午9时测得它在灯塔P的南偏西30°方向、距离灯塔120海里的M处,上午11时到达这座灯塔的正南方向的N处,则这艘轮船在这段时间内航行的平均速度是    海里/小时.
manfen5.com 满分网 查看答案
某风景区改造中,需测量湖两岸游船码头A、B间的距离,设计人员由码头A沿与AB垂直的方向前进了500米到达C处(如图),测得∠ACB=60°,则这个码头间的距离AB    米(答案可带根号).
manfen5.com 满分网 查看答案
如图,B、C是洲河岸边两点,A是河对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=200米,则点A到岸边BC的距离是    米.
manfen5.com 满分网 查看答案
如图,甲、乙两渔船同时从港口出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10manfen5.com 满分网海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为    海里/小时.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.