满分5 > 初中数学试题 >

在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM...

在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.
manfen5.com 满分网
(1)如图1,当点M在AB边上时,连接BN:
①求证:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求点M到AD的距离及tanα的值.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.
(1)①三角形ABN和ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是公共边,根据SAS即可判定两三角形全等. ②通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由(1)可得∠MDA=∠ABN,那么M到AD的距离和∠α就转化到直角三角形MDH和MAH中,然后根据已知条件进行求解即可. (2)本题要分三种情况即:ND=NA,DN=DA,AN=AD进行讨论. 【解析】 (1)①证明:∵四边形ABCD是菱形, ∴AB=AD,∠1=∠2. 又∵AN=AN, ∴△ABN≌△ADN(SAS). ②作MH⊥DA交DA的延长线于点H. 由AD∥BC,得∠MAH=∠ABC=60°. 在Rt△AMH中,MH=AM•sin60°=4×sin60°=2. ∴点M到AD的距离为2. ∴AH=2. ∴DH=6+2=8. 在Rt△DMH中,tan∠MDH=, 由①知,∠MDH=∠ABN=α, ∴tanα=; (2)∵∠ABC=90°, ∴菱形ABCD是正方形. ∴∠CAD=45°. 下面分三种情形: (Ⅰ)若ND=NA,则∠ADN=∠NAD=45°. 此时,点M恰好与点B重合,得x=6; (Ⅱ)若DN=DA,则∠DNA=∠DAN=45°. 此时,点M恰好与点C重合,得x=12; (Ⅲ)若AN=AD=6,则∠1=∠2. ∵AD∥BC, ∴∠1=∠4,又∠2=∠3, ∴∠3=∠4. ∴CM=CN. ∵AC=6. ∴CM=CN=AC-AN=6-6. 故x=12-CM=12-(6-6)=18-6. 综上所述:当x=6或12或18-6时,△ADN是等腰三角形.
复制答案
考点分析:
相关试题推荐
已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC,连接DF,并延长DF交AB的延长线于点E,连接CE.
(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;
(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.

manfen5.com 满分网 查看答案
已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10,BD=8.
(1)若AC⊥BD,试求四边形ABCD的面积;
(2)若AC与BD的夹角∠AOD=60°,求四边形ABCD的面积;
(3)试讨论:若把题目中“平行四边形ABCD”改为“四边形ABCD”,且∠AOD=θ,AC=a,BD=b,试求四边形ABCD的面积(用含θ,a,b的代数式表示).

manfen5.com 满分网 查看答案
某校数学兴趣小组在测量一座池塘边上A,B两点间的距离时用了以下三种测量方法,如下图所示.图中a,b,c表示长度,β表示角度.请你求出AB的长度(用含有a,b,c,β字母的式子表示).
manfen5.com 满分网
查看答案
在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
manfen5.com 满分网
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
manfen5.com 满分网
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
查看答案
如图,在平行四边形ABCD中,E为BC边上一点,且AE与DE分别平分∠BAD和∠ADC.
(1)求证:AE⊥DE;
(2)设以AD为直径的半圆交AB于F,连接DF交AE于G,已知CD=5,AE=8,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.