满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD. (1)求si...

如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.
(1)求sin∠DBC的值;
(2)若BC长度为4cm,求梯形ABCD的面积.

manfen5.com 满分网
(1)根据题目已知条件可知,在Rt△CDB中∠C=2∠DBC,则即可求得∠DBC=30°,从而确定sin∠DBC的值; (2)要求梯形ABCD的面积需要求得梯形的高,则需过D点向BC边作垂线DF,则根据三角函数可以求得BD的长,继而求得DF的长,即可求梯形的面积. 【解析】 (1)∵AD=AB, ∴∠ADB=∠ABD. ∵AD∥CB, ∴∠DBC=∠ADB=∠ABD. ∵在梯形ABCD中,AB=CD, ∴∠ABD+∠DBC=∠C=∠ABD+∠ADB=2∠DBC. ∵BD⊥CD, ∴3∠DBC=90°, ∴∠DBC=30°. ∴sin∠DBC=. (2)过D作DF⊥BC于F, 在Rt△CDB中,BD=BC×cos∠DBC=2(cm), 在Rt△BDF中,DF=BD×sin∠DBC=(cm), ∴S梯=(2+4)•=3(cm2).
复制答案
考点分析:
相关试题推荐
已知,在△ABC中,∠A=45°,AC=manfen5.com 满分网,AB=manfen5.com 满分网+1,则边BC的长为______
查看答案
我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出manfen5.com 满分网的值(用含α的三角函数表示).
manfen5.com 满分网
查看答案
已知:如图,在Rt△ABC中,∠C=90°,AC=manfen5.com 满分网.点D为BC边上一点,且BD=2AD,∠ADC=60°,求△ABC的周长(结果保留根号).

manfen5.com 满分网 查看答案
将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=manfen5.com 满分网,P是AC上的一个动点.
(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;
(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.

manfen5.com 满分网 查看答案
高为12米的教学楼ED前有一棵大树AB,如图(a).
(1)某一时刻测得大树AB、教学楼ED在阳光下的投影长分别是BC=2.5米,DF=7.5米,求大树AB的高度;
(2)现有皮尺和高为h米的测角仪,请你设计另一种测量大树AB高度的方案,要求:
①在图(b)中,画出你设计的测量方案示意图,并将应测量的数据标记在图上(长度用字母m,n …表示,角度用希腊字母α,β …表示);
②根据你所画出的示意图和标注的数据,求出大树的高度.(用字母表示)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.