满分5 > 初中数学试题 >

已知∠MAN,AC平分∠MAN. (1)在图1中,若∠MAN=120°,∠ABC...

已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α的三角函数表示),并给出证明.
manfen5.com 满分网
(1)由角平分线的性质可证∠ACB=∠ACD=30°,又由直角三角形的性质,得AB+AD=AC. (2)根据角平分线的性质过点C分别作AM,AN的垂线,垂足分别为E,F,可证AE+AF=AC,只需证AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF. (3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cosAC. (1)证明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, ∵∠ABC=∠ADC=90°, ∴∠ACB=∠ACD=30°, ∴AB=AD=AC, ∴AB+AD=AC. (2)【解析】 成立. 证法一:如图,过点C分别作AM,AN的垂线,垂足分别为E,F, ∵AC平分∠MAN, ∴CE=CF, ∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°, ∴∠CDE=∠ABC, ∵∠CED=∠CFB=90°, ∴△CED≌△CFB, ∴ED=FB, ∴AB+AD=AF+BF+AE-ED=AF+AE,由(1)知AF+AE=AC, ∴AB+AD=AC, 证法二:如图,在AN上截取AG=AC,连接CG, ∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG, ∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°, ∴∠CBG=∠ADC, ∴△CBG≌△CDA, ∴BG=AD, ∴AB+AD=AB+BG=AG=AC; (3)证明:由(2)知,ED=BF,AE=AF, 在Rt△AFC中,cos∠CAF=, 即cos, ∴AF=ACcos, ∴AB+AD=AF+BF+AE-ED=AF+AE=2AF=2cosAC. 把α=60°,代入得AB+AD=AC.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,∠C=90°,sinA=manfen5.com 满分网,AB=15,求△ABC的周长和tanA的值.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=manfen5.com 满分网,BC=26.
求:(1)cos∠DAC的值;
(2)线段AD的长.

manfen5.com 满分网 查看答案
如图,某种雨伞的伞面可以看成由12块完全相同的等腰三角形布料缝合而成,量得其中一个三角形OAB的边OA=OB=56cm.
(1)求∠AOB的度数;
(2)求△OAB的面积.(不计缝合时重叠部分的面积)

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,AE=6,cosA=manfen5.com 满分网
求(1)DE、CD的长;(2)tan∠DBC的值.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,∠BAC的平分线AQ交BC于点P,交⊙O于点Q.已知AC=6,∠AQC=30度.
(1)求AB的长;
(2)求点P到AB的距离;
(3)求PQ的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.