满分5 > 初中数学试题 >

已知:如图,在△ABC中,D是AB边上的一点,BD>AD,∠A=∠ACD, (1...

已知:如图,在△ABC中,D是AB边上的一点,BD>AD,∠A=∠ACD,
(1)若∠A=∠B=30°,BD=manfen5.com 满分网,求CB的长;
(2)过D作∠CDB的平分线DF交CB于F,若线段AC沿着AB方向平移,当点A移到点D时,判断线段AC的中点E能否移到DF上,并说明理由.

manfen5.com 满分网
(1)求CB的长,依据已知条件去做;利用外角性质得,∠BDC=∠A+∠ACD=60°,△BCD中,∠BCD=180°-30°-60°=90°,BD=,CB=BD•cos30°=; (2)AC的中点E能移到DF上,则DF>AC根据题中条件证明△BDF∽△BAC,则有=,BD>AD,=>,DF>AC.从而说明所以说E′在线段DF上. 【解析】 (1)∵∠A=∠B=30°, ∴∠ACB=120°, 又∠ACD=30°, ∴∠DCB=90°, ∵BD=, ∴CB=BD•cos30°=; (2)AC的中点E能移到DF上. ∵∠CDB=∠A+∠DCA,∠A=∠DCA, ∴∠CDB=2∠A,又DF平分∠CDB, ∴∠CDF=∠FDB=∠A, ∴DF∥AC, ∴△BDF∽△BAC, ∴=, ∵BD>AD, ∴=,>, ∴DF>AC, 过E作EE′∥AD交DF于E′, 则四边形AEE′D为平行四边形, 则DE′=DE, 由于DF>AC=AE=DE′, 所以说E′在线段DF上.
复制答案
考点分析:
相关试题推荐
在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则cosA=manfen5.com 满分网
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3manfen5.com 满分网,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)

manfen5.com 满分网 查看答案
manfen5.com 满分网已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E.
(1)若△ABD是等边三角形,求DE的长;
(2)若BD=AB,且tan∠HDB=manfen5.com 满分网,求DE的长.
查看答案
附加题:由直角三角形边角关系,可将三角形面积公式变形,得S△ABC=manfen5.com 满分网bc•sin∠A①,即三角形的面积等于两边之长与夹角正弦之积的一半.
如图,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得manfen5.com 满分网AC•BC•sin(α+β)=manfen5.com 满分网AC•CD•sinα+manfen5.com 满分网BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形边角关系,消去②中的AC、BC、CD吗?不能,说明理由;能,写出解决过程.

manfen5.com 满分网 查看答案
已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α的三角函数表示),并给出证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.