如图,为测量小河的宽度,先在河岸边任意取一点A,再在河的另一岸取两点B、C,测得∠ABC=45°,∠ACB=30°,量得BC长为20米.
(1)求小河的宽度(使用计算器的地区,结果保留三位有效数字;不使用计算器的地区,结果保留根号);
(2)请再设计一种测量河宽度的方案,画出设计草图并作简要说明.
考点分析:
相关试题推荐
课本中有这么一个例题:“如图,河对岸有一水塔AB.在C处测得塔顶A的仰角为30°,向塔前进12米到达D,在D处测得A的仰角为45°,求水塔AB的高”.
解这个题时,我们通常时这样去想的(分析):要求水塔AB的高,只要去寻找AB于已知量之间的关系.在这里,由于难以找到四个量之间的直接关系,我们可引进一个或两个中间量.以此作为媒介,再寻找这些量之间的关系,得到.于是,就可求得水塔的高,问题就解决了.
查看答案
如图,海上有一灯塔P,在它周围3海里处有暗礁.一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在它的北偏东60°的方向,继续行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?
查看答案
“航天”号轮船以20海里/时的速度向正东方向航行,当轮船到达A处时,测得N岛在北偏东60°的方向上,继续航行30分钟到达B处,发现一块告示牌(见图),测得N岛在北偏东45°的方向上,若轮船继续向正东方向航行,有无触礁危险?简述理由.
查看答案
如图,EF为磁湖中间的杭州路的一段,C为路右侧湖中鲶鱼墩中心,磁湖中学初三(2)班课外兴趣小组为测量鲶鱼墩中心与杭州路之间的距离,他们先在杭州路A处测得∠CAE=α°,再向前走a米到B处测得∠CBE=β度.求出鲶鱼墩中心与杭州路之间的距离.
查看答案
如图,某乡村小学有A、B两栋教室,B栋教室在A栋教室正南方向36米处,在A栋教室西南方向300
米的C处有一辆拖拉机以每秒8米的速度沿北偏东60°的方向CF行驶,若拖拉机的噪声污染半径为100米,试问A、B两栋教室是否受到拖拉机噪声的影响若有影响,影响的时间有多少秒?(计算过程中
取1.7,各步计算结果精确到整数)
查看答案