满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°....

如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4manfen5.com 满分网,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长;
(2)当MN∥AB时,求t的值;
(3)试探究:t为何值时,△MNC为等腰三角形.

manfen5.com 满分网
(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解; (2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解; (3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解. 【解析】 (1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形. ∴KH=AD=3. 在Rt△ABK中,AK=AB•sin45°=4•=4BK=AB•cos45°=4=4. 在Rt△CDH中,由勾股定理得,HC==3. ∴BC=BK+KH+HC=4+3+3=10. (2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形. ∵MN∥AB, ∴MN∥DG. ∴BG=AD=3. ∴GC=10-3=7. 由题意知,当M、N运动到t秒时,CN=t,CM=10-2t. ∵DG∥MN, ∴∠NMC=∠DGC. 又∠C=∠C, ∴△MNC∽△GDC. ∴, 即. 解得,. (3)分三种情况讨论: ①当NC=MC时,如图③,即t=10-2t, ∴. ②当MN=NC时,如图④,过N作NE⊥MC于E. 解法一: 由等腰三角形三线合一性质得 EC=MC=(10-2t)=5-t. 在Rt△CEN中,cosC==, 又在Rt△DHC中,cosC=, ∴. 解得t=. 解法二: ∵∠C=∠C,∠DHC=∠NEC=90°, ∴△NEC∽△DHC. ∴, 即. ∴t=. ③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t. 解法一:(方法同②中解法一), 解得. 解法二: ∵∠C=∠C,∠MFC=∠DHC=90°, ∴△MFC∽△DHC. ∴, 即, ∴. 综上所述,当t=、t=或t=时,△MNC为等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.
(1)在△ABC中,BC=______,tanB=______
(2)请在方格中画出一个格点三角形DEF,使△DEF∽△ABC,并且△DEF与△ABC的相似比为2.

manfen5.com 满分网 查看答案
将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.
manfen5.com 满分网
(1)填空:如图1,AC=______
查看答案
如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

manfen5.com 满分网 查看答案
如图,把正方形ACFG与Rt△ACB按如图(甲)所示重叠在一起,其中AC=2,∠BAC=60°,若把Rt△ACB绕直角顶点C按顺时针方向旋转,使斜边AB恰好经过正方形ACFG的顶点F,得△A′B′C′,A B分别与A′C,A′B′相交于D、E,如图(乙)所示.
①△ACB至少旋转多少度才能得到△A′B′C′?说明理由;
②求△ACB与△A′B′C′的重叠部分(即四边形CDEF)的面积(若取近似值,则精确到0.1)?manfen5.com 满分网
查看答案
如图,在直角坐标系中,已知点M的坐标为(1,0),将线段OM绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M⊥OM,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn
(1)写出点M5的坐标;
(2)求△M5OM6的周长;
(3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.