满分5 > 初中数学试题 >

如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁...

如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=manfen5.com 满分网
(1)求点M离地面AC的高度BM(单位:厘米);
(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘
manfen5.com 满分网米).
(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.那么求BM的长就转化为求HA的长,而要求出HA,必须先求出OH,在直角三角形OHM中,sinα==,且铁环的半径为5个单位即OM=5,可求得HM的值,从而求得HA的值; (2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α,又因为sinα==,所以可得出FN和FM之间的数量关系,即FN=FM,再根据MN=11-3=8,利用勾股定理即可求出FM=10个单位. 【解析】 过M作与AC平行的直线,与OA、FC分别相交于H、N. (1)在Rt△OHM中,∠OHM=90°,OM=5, HM=OM×sinα=3, 所以OH=4, MB=HA=5-4=1, 1×5=5cm. 所以铁环钩离地面的高度为5cm; (2)∵铁环钩与铁环相切, ∴∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α, ∴=sinα=, ∴FN=FM, 在Rt△FMN中,∠FNM=90°,MN=BC=AC-AB=11-3=8. ∵FM2=FN2+MN2, 即FM2=(FM)2+82, 解得:FM=10, 10×5=50(cm). ∴铁环钩的长度FM为50cm.
复制答案
考点分析:
相关试题推荐
如图,教室窗户的高度AF为2.5米,遮阳蓬外端一点D到窗户上椽的距离为AD,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,PE为窗户的一部分在教室地面所形成的影子且长为manfen5.com 满分网米,试求AD的长度.(结果带根号)

manfen5.com 满分网 查看答案
某工厂接受一批支援四川省汶川灾区抗震救灾帐篷的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=manfen5.com 满分网,矩形BCDE的边CD=2BC,这个横截面框架(包括BE)所用的钢管总长为15m,求帐篷的篷顶A到底部CD的距离.(结果精确到0.1m)

manfen5.com 满分网 查看答案
如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.
(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)
(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732).
manfen5.com 满分网
查看答案
如图1,一扇窗户打开后用窗钩AB可将其固定.
(1)这里所运用的几何原理是( )
(A)三角形的稳定性(B)两点之间线段最短;
(C)两点确定一条直线(D)垂线段最短;
(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(manfen5.com 满分网≈1.7,结果精确到整数)

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,sinB=manfen5.com 满分网,点D在BC边上,∠ADC=45°,DC=6,
求∠BAD的正切值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.