如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米)
考点分析:
相关试题推荐
如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=
.
(1)求点M离地面AC的高度BM(单位:厘米);
(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘
米).
查看答案
如图,教室窗户的高度AF为2.5米,遮阳蓬外端一点D到窗户上椽的距离为AD,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,PE为窗户的一部分在教室地面所形成的影子且长为
米,试求AD的长度.(结果带根号)
查看答案
某工厂接受一批支援四川省汶川灾区抗震救灾帐篷的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE的底角∠AEB=θ,且tanθ=
,矩形BCDE的边CD=2BC,这个横截面框架(包括BE)所用的钢管总长为15m,求帐篷的篷顶A到底部CD的距离.(结果精确到0.1m)
查看答案
如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC=20米.
(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)
(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:
≈1.414,
≈1.732).
查看答案
如图1,一扇窗户打开后用窗钩AB可将其固定.
(1)这里所运用的几何原理是( )
(A)三角形的稳定性(B)两点之间线段最短;
(C)两点确定一条直线(D)垂线段最短;
(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(
≈1.7,结果精确到整数)
查看答案