满分5 > 初中数学试题 >

如图,转盘被等分成六个扇形区域,并在上面依次写上数字:1、2、3、4、5、6.转...

如图,转盘被等分成六个扇形区域,并在上面依次写上数字:1、2、3、4、5、6.转盘指针的位置固定,转动转盘后任其自由停止.
(1)当停止转动时,指针指向奇数区域的概率是多少?
(2)请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率为manfen5.com 满分网,并说明你的设计理由.(设计方案可用图示表示,也可以用文字表述)

manfen5.com 满分网
(1)让奇数的个数除以数的总数即为所求的概率; (2)合理即可. 【解析】 (1)当转盘停止转动时,指针指向数字区域1,2,3,4,5, 6的机会是均等的,故共有6种均等的结果,其中指针可指向奇数区域1,3,5有3种结果, ∴P(奇数)=. 所以,转盘停止时,指针指向奇数区域的概率是.(4分) (2)可在转盘的6个小扇形中,将其中的任意4个填涂成同一种颜色即可,(6分) 因为转盘停止转动后,指针指向任何一个小扇形区域的机会均等,其概率为,而图中有4个小扇形涂成了同一种颜色,即指针指向这种颜色区域的概率为4×=.(7分)
复制答案
考点分析:
相关试题推荐
小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上.
(1)求小皮球分别停留在黑色方砖与白色方砖上的概率;
(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖颜色?怎样改变?

manfen5.com 满分网 查看答案
如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8.
(1)自由转动转盘,当它停止转动时,指针指向的数正好能被8整除的概率是多少?
(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为manfen5.com 满分网
(注:指针指在边缘处,要重新转,直至指到非边缘处).

manfen5.com 满分网 查看答案
如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).
(1)求点P落在正方形面上(含边界,下同)的概率;
(2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正方形面上的概率为manfen5.com 满分网?若存在,指出其中的一种平移方式;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知:如图,⊙O的直径AD=2,manfen5.com 满分网,∠BAE=90度.
(1)求△CAD的面积;
(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?

manfen5.com 满分网 查看答案
(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为manfen5.com 满分网?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

manfen5.com 满分网 manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.