如图所示,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6;
(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?
(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为
.
考点分析:
相关试题推荐
某商场进行有奖促销活动.活动规则:购买500元商品就可以获得一次转转盘的机会,(转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以获得该区域相应等级奖品一件.商场工作人员在制作转盘时,将获奖扇形区域圆心角分配如下表:
奖次 | 特等奖 | 一等奖 | 二等奖 | 三等奖 |
圆心角 | 1° | 10° | 30° | 90° |
(1)获得圆珠笔的概率是多少?
(2)如果不用转盘,请设计一种等效实验方案.
(要求写清楚替代工具和实验规则)
查看答案
如图,转盘被等分成六个扇形区域,并在上面依次写上数字:1、2、3、4、5、6.转盘指针的位置固定,转动转盘后任其自由停止.
(1)当停止转动时,指针指向奇数区域的概率是多少?
(2)请你用这个转盘设计一个游戏(六等分扇形不变),使自由转动的转盘停止时,指针指向的区域的概率为
,并说明你的设计理由.(设计方案可用图示表示,也可以用文字表述)
查看答案
小明家里的阳台地面,水平铺设着仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上.
(1)求小皮球分别停留在黑色方砖与白色方砖上的概率;
(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖颜色?怎样改变?
查看答案
如图所示,转盘被等分成八个扇形,并在上面依次标有数字1,2,3,4,5,6,7,8.
(1)自由转动转盘,当它停止转动时,指针指向的数正好能被8整除的概率是多少?
(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为
.
(注:指针指在边缘处,要重新转,直至指到非边缘处).
查看答案
如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).
(1)求点P落在正方形面上(含边界,下同)的概率;
(2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正方形面上的概率为
?若存在,指出其中的一种平移方式;若不存在,说明理由.
查看答案